Journal article Open Access
Tasmiya Tazeen; Mrinal Sarvagya
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://zenodo.org/record/5408324</identifier> <creators> <creator> <creatorName>Tasmiya Tazeen</creatorName> <affiliation>School of Electronics and Communication Engineering, Reva University, Bengaluru-560064, India.</affiliation> </creator> <creator> <creatorName>Mrinal Sarvagya</creatorName> <affiliation>School of Electronics and Communication Engineering, Reva University, Bengaluru-560064, India.</affiliation> </creator> </creators> <titles> <title>Brain Tumor Segmentation and Classification using Multiple Feature Extraction and Convolutional Neural Networks</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2021</publicationYear> <subjects> <subject>Segmentation, Brain Tumor, Convolutional Neural Network, Deep Learning.</subject> <subject subjectScheme="issn">2249-8958</subject> <subject subjectScheme="handle">100.1/ijeat.F29480810621</subject> </subjects> <contributors> <contributor contributorType="Sponsor"> <contributorName>Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP)</contributorName> <affiliation>Publisher</affiliation> </contributor> </contributors> <dates> <date dateType="Issued">2021-08-30</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="JournalArticle"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5408324</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="ISSN" relationType="IsCitedBy" resourceTypeGeneral="JournalArticle">2249-8958</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.35940/ijeat.F2948.0810621</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Intracranial tumors are a type of cancer that grows spontaneously inside the skull. Brain tumor is the cause for one in four deaths. Hence early detection of the tumor is important. For this aim, a variety of segmentation techniques are available. The fundamental disadvantage of present approaches is their low segmentation accuracy. With the help of magnetic resonance imaging (MRI), a preventive medical step of early detection and evaluation of brain tumor is done. Magnetic resonance imaging (MRI) offers detailed information on human delicate tissue, which aids in the diagnosis of a brain tumor. The proposed method in this paper is Brain Tumour Detection and Classification based on Ensembled Feature extraction and classification using CNN.</p></description> </descriptions> </resource>
Views | 27 |
Downloads | 21 |
Data volume | 16.4 MB |
Unique views | 26 |
Unique downloads | 20 |