Journal article Open Access

Renewable Energy Production Forecasting: A Comparative Machine Learning Analysis

Kazi Md Shahiduzzaman; Md Noor Jamal; Md. Rashed Ibn Nawab,

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Renewable Energy Forecasting, Support Vector Machine (SVM), Linear Regression (LR), Long Short-Term Memory (LSTM), Time Series Forecasting.</subfield>
  <controlfield tag="005">20210904014840.0</controlfield>
  <controlfield tag="001">5407608</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">School of Electronics, Information and Communication, Huazhong University of Science and Technology, Wuhan, China.</subfield>
    <subfield code="a">Md Noor Jamal</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">School of Computer Science and Technology, Northwestern Polytechnical University, China</subfield>
    <subfield code="a">Md. Rashed Ibn Nawab,</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  and Sciences Publication (BEIESP)</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">989381</subfield>
    <subfield code="z">md5:13be3022cd6faca1de6d206cc9a4b138</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-08-30</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">11-18</subfield>
    <subfield code="n">6</subfield>
    <subfield code="p">International Journal of Engineering and Advanced Technology (IJEAT)</subfield>
    <subfield code="v">10</subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Department of Electrical and Electronic Engineering, Jatiya Kazi Nazrul Islam University, Mymensingh, Bangladesh.</subfield>
    <subfield code="a">Kazi Md Shahiduzzaman</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Renewable Energy Production Forecasting: A Comparative Machine Learning Analysis</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2249-8958</subfield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)100.1/ijeat.E26890610521</subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;As renewable energy has become increasingly popular worldwide, while solar and wind energy has been the leading source of renewable energy up to now, the accuracy of renewable energy forecasts is challenge for the planning, management, and operations of the power system. However, due to the intermediate and frenzied nature of renewable energy data, this is a most challenging task. This study provides a comprehensive and complete review of the renewable energy forecast based on different machine learning algorithms to explore effectiveness, efficiency, competence, and application potential. In this work, we have built time series renewable energy forecasting model with Support Vector Machine (SVM), Linear Regression (LR), and Long Short-Term Memory (LSTM) on twelve (12) countries. The experimental results are very interesting. For example, SVM based forecasting model is a better fit for the countries with small mean and standard deviation while linear regression-based methods show a bit better result in case of larger mean and standard deviation. Meanwhile, LSTM based models provide smoother regular-shaped forecasting. We can forecast two years of daily renewable energy production with these forecasting models. The point should be noted that we have developed different models for different countries. We have able to reach a Root Mean Square (RMS) value of 3.1 38 with SVM based model.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2249-8958</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijeat.E2689.0810621</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
Views 29
Downloads 24
Data volume 23.7 MB
Unique views 22
Unique downloads 21


Cite as