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ABSTRACT 
This paper studies a space-time generalization of decorrelating 
RAKE receiver recently proposed by Liu and Li for blind 
multiuser detection of direct sequence code division multiple 
access (DS-CDMA) signals under frequency selective fading 
channel. Multiple receiving antennas are employed to further 
enhance the performance of the DRAKE receiver through 
diversity combining. Simulations show that the proposed 
space-time DRAKE (ST-DRAKE) receiver performs 
significantly better than the temporal-only DRAKE receiver 
and its performance is close to that of the MMSE receiver.  The 
use of multistage Wiener filter to reduce the complexity of the 
ST-DRAKE is also studied.   

 

1. INTRODUCTION 
Multiple access interference (MAI) and multipath fading are 
two major issues that affect the capacity of direct sequence 
code division multiple access (DS-CDMA) systems. 
Conventional matched filtering technique suffers from the 
near-far problem and user’s signature waveform mismatch of 
fading channels, resulting in poor performance. Advanced 
signal processing algorithms, including the RAKE receiver, 
multiuser detection and space-time processing using multiple 
antennas, have been proposed to overcome these impairments. 
A RAKE matched filter coherently combined replicas of the 
desired signal in resolvable multipaths [5]. On the other hand, 
multiuser detection (MUD) technique suppresses the MAI 
using known users’ signature waveforms [6]. With antenna 
array, these techniques can be enhanced through spatial 
diversity to provide better performance [7]. 

Recently, adaptive minimum output energy (MOE) receiver 
has been proposed for blind CDMA reception which requires 
only the knowledge of the desired user’s signature waveform 
[1]. In practice, the effective users’ signature waveforms vary 
in a multipath fading channel. Periodic training is therefore 
needed to estimate the signature waveforms at the expense of 
lower bandwidth efficiency.  

A decorrelating RAKE (DRAKE) receiver that allows 
multiuser detection in frequency-selective fading channels was 
presented in [3]. It has the advantage of low implementation 
complexity and only the desired user’s spreading sequence is 
required. The DRAKE receiver is based on a constrained 
adaptive filtering approach similar to the MOE detector, in the 
sense that the constrained adaptive filter minimizes the energy 
of the output signal while constraining the output gain of the 
desired user to be a constant. To reduce the implementation 
complexity of the adaptive filter, rank reduction algorithm was 
proposed to reduce the dimension of adaptation to the signal 
subspace. A reduced rank decorrelating RAKE receiver based 
on multistage Wiener filter (MSWF) [8] was proposed in [4], 
where the MSWF and the generalized sidelobe canceller are 
used to implement the constrained adaptive filter for 
interference suppression.  It is very effective when the 

processing gain is larger than the dimension of the signal 
subspace, because the MSWF can be terminated at a very small 
number of stages.  Hence, the MSWF aims to provide near full-
rank performance with reduced receiver’s complexity. Previous 
study showed that the performance of the DRAKE receiver is 
comparable to that of the MMSE receiver [9] in frequency-
selective fading channels.  

In this paper, we further extend the idea of the DRAKE 
receiver to multiple receiving antennas. In particular, a space-
time DRAKE (ST-DRAKE) receiver is proposed for the 
reception of CDMA signals using multiple receiving antennas 
under frequency selective fading channel. The use of multiple 
receiving antennas further enhances the performance of the 
DRAKE receiver through diversity combining. Simulations 
show that the proposed space-time DRAKE receiver performs 
significantly better than the temporal-only DRAKE receiver 
and its performance is close to that of the MMSE receiver.   

2. SYSTEM MODEL 

Consider the reverse link of a DS-CDMA system with K -
users and M  receiving antenna elements. The received 
complex signal at the m-th antenna is given by 
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where )(ibk  is the i-th data symbol, kν  is the delay, )(m
kg is the 

signature waveform of the k-th user. The symbol period is 
denoted by sT  and )(tu  is the additive white Gaussian noise 

(AWGN) with covariance 2
uσ . The users’ signature waveform 

is given by 
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where cL
jk lc 1)}({ = and )()( th m

k are the spreading sequence and 

chip waveform of the k-th user, respectively. cT  is the chip 
interval and csc TTL /=  is the processing gain. For a 
multipath channel with delay spread 1≥mL , the users’ chip 
waveforms are given by 

 ∑
=

−=
mL

l

m
lkk

m
lk

m
lk

m
lk ttth

1

)(
,

)(
,

)(
,

)(
, )()()()( τρθα a , (3) 

where )()(
, tm
lkα , )(

,
m
lkτ and )(

,
m
lkθ are the gain, delay and AOA, 

respectively, of the l-th path of the k-th user’s signal received 
at the m-th antenna. The antenna response due to the signal 
arriving at an angle of θ  is denoted as )(θa , and )(tkρ is the 
original chip waveform. We assume that the fading rate of the 
channel is slow so that the channel is approximately constant 
over several symbol intervals. 



The received baseband signal )()( ty m  is sampled at chip 
rate over symbol duration of 1−+= mc LLN . The N-vector of 
chip-sampled signal samples is written as 
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Without loss of generality, we assume that the desired user 
in the system is user 1 (i.e. 1=k ). The sampled signal vector 

TM nnn )]()([)( )()1( yyy K= from the M antennae at time n can 
be expressed as 

 )()()()( 11 nnnbn uigy ++= , (7)  

where )(ni denotes the MAI, )(nu  is the additive white noise 
vector and  

 11
~

hCg = , (8) 
where  
 TMn ][)( )(

1
)1(

11 hhh K= , (9) 

 1
~

CIC ⋅= × mMLMN , (10) 

and nm,I is an nm×  identity matrix. 

3. SPACE-TIME DECORRELATING RAKE 
RECEIVER 

 The structure of the ST-DRAKE receiver is shown in 
Figure 1. In the rest of this paper, the desired user’s subscript is 
dropped for simplicity. As shown in Figure 1, the received 
signal at the m-th antenna is first filtered by weight vectors 

mL
llm 1, }{ =w  such that the desired signal along each code vector 

lc  is extracted while suppressing the MAI and channel noise. 
It can be readily shown that this constrained optimization 
criterion can be written as 
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where )()( mm yy
R  is the covariance matrix of )(my  and the weight 

vector lm,w  is given by  
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The optimal solution to the problem in (11) is given by 
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 Each weight vector in the l-th arm accounts for signal 
received from different delayed paths. The output of the l-th 
arm of the adaptive filter is given by  

 )()( )(
,, nnx mH
lmlm yw= , Mm ,,1K= . (14) 

 Using (4) and (11), equation (14) can be rewritten to 
emphasize the desired user’s signal as 
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where )(, nε lm is the effective MAI and channel noise after 

filtering. With mL  number of paths for each user and M 
receiving antennae, all signals scattered through different 
multipaths are extracted and stacked together such that 
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where )(mh  is given by (6) , T
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)( }{ =x  are then coherently combined to obtain the estimate 
of transmitted symbols. The optimum combining vector cohw  
is given by 
 hRw xx

1−=coh . (17) 

 Since the MAI and channel noise are decorrelated and 
suppressed in the constrained adaptive filter, the signal-to-
interference-and noise ratio (SINR) of the filter outputs is high 
such that the optimum combining vector can be approximated 
by the principle eigenvector of 1−

xxR . The combined output 
}{nz  is given by 

 )()( nnz H
cohxw= . (18) 

 An estimate of the transmitted information symbol is then 
obtained by making a decision based on }{nz . For BPSK 
modulation, the estimate of the transmitted symbol is given by 

 )}](sgn[Re{)(1̂ nznb = . (19) 

 The main difference between the proposed receiver and the 
DRAKE receiver is that the proposed receiver processes signal 
in both space and time domain while the DRAKE receiver 
operates in time domain only. By exploiting both spatial and 
temporal signatures using antenna array, better interference 
suppression can be achieved.   
 For MMSE receiver, the optimal weighting vector is given 
by 

 })()({minarg
2
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w
w . (20) 

 In section 5, the performance of the proposed ST-DRAKE 
receiver is compared with the MMSE receiver. 
 



4. RANK-REDUCTION USING MULTISTAGE 
WIENER FILTER 

The calculation of the weight vector lm,w in each arm is 

computationally intensive since the solution of lm,w  involves a 
matrix inversion. An efficient solution is to decompose the 
weight vector into two orthogonal components as follows 
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is a vector which depends on the spreading sequence of the 
desired only. Note that the subscript of the m-th antenna 
element is omitted for clarity. Equation (21) is in fact 
analogous to the generalized sidelobe canceller (GSC) used in 
array processing. The weight vector lc,w is in the constraint 
subspace and thus allows the desired signal to pass through the 
adaptive filter with constant gain. The matrix B  is a blocking 
matrix that is orthogonal to C , i.e. 0BC = . Since the 
spreading sequence of the desired user is assumed known, the 
blocking matrix B can be determined by using eigen-
decomposition [10]. The blocking matrix B  projects the 
received data sample )(ny  into a subspace with reduced 
dimension, thus reduces the number of taps required in the 
adaptive filter. In contrast, the weight vector la,w  depends on 
the received data and hence determines the complexity of the 
MOE detector. It is used to remove any interference and noise 
from appearing at the filter output. The adaptive weight vector 

la,w  can be determined by the recursive least squares (RLS) or 
the least mean squares (LMS) algorithms.  Alternatively, eigen-
based methods, such as principle components and cross 
spectral method can be used to reduce the dimension for 
adaptation.   

Another effective method for dimension or rank reduction 
is the multistage Wiener filter (MSWF) [5].  The MSWF does 
not require matrix inversion or eigen-decomposition and 
therefore is more computationally efficient than the eigen-
based methods. It decomposes a Wiener filter (i.e. la,w ) into 
multiple stages and successively projects the desired signal 
onto lower dimension orthogonal subspaces.  Near full rank 
performance can be achieved by using a small number of 
stages, greatly reducing the complexity of the receiver. Figure 
2 shows the block diagram of the l-arm of the constrained 
adaptive filter utilizing a rank-4 MSWF. Using the MSWF 
structure, the adaptive weighting vector la,w  is decomposed 
into multiple stages, each of which consists of two orthogonal 
components; il ,h  is a normalized cross-correlation vector given 
by  
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and il ,B  is a blocking matrix such that 

 0hB =il
H
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where the subscript i denotes the i-th stage of the MSWF. The 
output )(, nd il  of the filters il ,h  at each stage are weighted by 

iw  and combined to obtain the final output )(nxl  of the l-arm. 
The weight at each stage can be obtained by 
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A recursive algorithm for the MSWF is developed in [11]. 
The choice of D affects the output SINR of the receiver [12].  
The recursive rank-D MSWF is summarized as the follows. 
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At each n, decrement from 1,KDi = : 
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where )()( ndne DD = . The subscript ),1( iN − of ih denotes its 
first )( iN − components.  

5. SIMULATION RESULTS 

 Consider an asynchronous CDMA system with BPSK 
modulation. The processing gain of the system is 31 and Gold 
code is used. The number of multipaths mL  for all users is 4 
and are generated with delays chosen from }3,2,,0{ ccc TTT . It is 
also assumed that the AOA of each interfering users are 
randomly distributed over ],0[ π  with angular spread equals to 
zero. The rank of the MSWF is chosen as 10. 
 In Figure 3, the performance of the ST-DRAKE receiver is 
compared with the MMSE receiver. Both ST-DRAKE 
receivers with and without using MSWF are considered. The 
number of users, including the desired user, is 10. The result is 
shown as a function of bit-energy-to-noise-ratio ob NE /  for 
number of antenna elements ranging from M = 1 to 3. Note that 
the single antenna receiver (i.e. 1=M ) is equivalent to the 
DRAKE receiver in [7]. As shown in Figure 3, the ST-DRAKE 
has better BER performance than the DRAKE receiver, as a 
result of spatial diversity. The performance of the MSWF-
based ST-DRAKE receiver has similar performance to the ST-
DRAKE receiver without using MSWF. The ST-DRAKE 
receiver in general has comparable performance with the 
MMSE receiver. 



 Figure 4 shows the performance of the ST-DRAKE 
receiver versus the number of users in the system. The bit-
energy-to-noise rate ob NE /  is chosen as 5dB. Both the 
performance of ST-DRAKE and MMSE receiver degrade when 
the number of users in the system increases. It is due to the 
increase of MAI such that the SINR of the received signal is 
decreased, which leads to a lower BER. 

6. CONCLUSIONS 

A space-time generalization of the decorrelating RAKE 
(DRAKE) receiver is presented for blind multiuser reception of 
DS-CDMA signal using multiple receiving antennas under 
frequency selective fading channel.  Through diversity 
combining, the performance of the DRAKE receiver is 
significantly improved.  Simulations show that the proposed 
space-time DRAKE receiver performs significantly better than 
the temporal-only DRAKE receiver and its performance is 
close to that of the MMSE receiver.  The use of multistage 
Wiener filter to reduce the complexity of the ST-DRAKE is 
also studied. 
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Figure 1. Space-time decorrelating RAKE receiver. 
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Figure 2. RAKE receiver for the l-th arm using MSWF. 
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Figure 3. Bit-error-rate versus ob NE / . 
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Figure 4. Bit-error-rate versus number of users K.. 


