Software Open Access

rasbt/mlxtend: Version 0.19.0

Sebastian Raschka; James Bourbeau; Maitreyee Mhasakar; Reiichiro Nakano; Kota Mori; Zach Griffith; JJLWHarrison; Jakub Šmíd; Daniel; Francisco J. H. Heras; Guillaume Poirier-Morency; Qiang Gu; Colin; Floris Hoogenboom; Steve Harenberg; Vahid MIRJALILI; Denis Barbier; Marco Tiraboschi; hanzgs; Florian Charlier; Alejandro Correa Bahnsen; Gabriel Azevedo Ferreira; Janpreet Singh; João Pedro Zanlorensi Cardoso; Laurens Geffert; Oliver Tomic; Pablo Fernandez; Christos Aridas; Selay; Ackerley Tng

Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="" xmlns:oai_dc="" xmlns:xsi="" xsi:schemaLocation="">
  <dc:creator>Sebastian Raschka</dc:creator>
  <dc:creator>James Bourbeau</dc:creator>
  <dc:creator>Maitreyee Mhasakar</dc:creator>
  <dc:creator>Reiichiro Nakano</dc:creator>
  <dc:creator>Kota Mori</dc:creator>
  <dc:creator>Zach Griffith</dc:creator>
  <dc:creator>Jakub Šmíd</dc:creator>
  <dc:creator>Francisco J. H. Heras</dc:creator>
  <dc:creator>Guillaume Poirier-Morency</dc:creator>
  <dc:creator>Qiang Gu</dc:creator>
  <dc:creator>Floris Hoogenboom</dc:creator>
  <dc:creator>Steve Harenberg</dc:creator>
  <dc:creator>Vahid MIRJALILI</dc:creator>
  <dc:creator>Denis Barbier</dc:creator>
  <dc:creator>Marco Tiraboschi</dc:creator>
  <dc:creator>Florian Charlier</dc:creator>
  <dc:creator>Alejandro Correa Bahnsen</dc:creator>
  <dc:creator>Gabriel Azevedo Ferreira</dc:creator>
  <dc:creator>Janpreet Singh</dc:creator>
  <dc:creator>João Pedro Zanlorensi Cardoso</dc:creator>
  <dc:creator>Laurens Geffert</dc:creator>
  <dc:creator>Oliver Tomic</dc:creator>
  <dc:creator>Pablo Fernandez</dc:creator>
  <dc:creator>Christos Aridas</dc:creator>
  <dc:creator>Ackerley Tng</dc:creator>
  <dc:description>Version 0.19.0 (09/02/2021)
New Features

Adds a second "balanced accuracy" interpretation ("balanced") to evaluate.accuracy_score in addition to the existing "average" option to compute the scikit-learn-style balanced accuracy. (#764)
Adds new scatter_hist function to mlxtend.plotting for generating a scattered histogram. (#757 via Maitreyee Mhasaka)
The evaluate.permutation_test function now accepts a paired argument to specify to support paired permutation/randomization tests. (#768)
The StackingCVRegressor now also supports multi-dimensional targets similar to StackingRegressor via StackingCVRegressor(..., multi_output=True). (#802 via Marco Tiraboschi)


Updates unit tests for scikit-learn 0.24.1 compatibility. (#774)
StackingRegressor now requires setting StackingRegressor(..., multi_output=True) if the target is multi-dimensional; this allows for better input validation. (#802)
Removes deprecated res argument from plot_decision_regions. (#803)
Adds a title_fontsize parameter to plot_learning_curves for controlling the title font size; also the plot style is now the matplotlib default. (#818)
Internal change using 'c': 'none' instead of 'c': '' in mlxtend.plotting.plot_decision_regions's scatterplot highlights to stay compatible with Matplotlib 3.4 and newer. (#822)
Adds a fontcolor_threshold parameter to the mlxtend.plotting.plot_confusion_matrix function as an additional option for determining the font color cut-off manually. (#827)
The frequent_patterns.association_rules now raises a ValueError if an empty frequent itemset DataFrame is passed. (#843)
The .632 and .632+ bootstrap method implemented in the mlxtend.evaluate.bootstrap_point632_score function now use the whole training set for the resubstitution weighting term instead of the internal training set that is a new bootstrap sample in each round. (#844)

Bug Fixes

Fixes a typo in the SequentialFeatureSelector documentation (#835 via João Pedro Zanlorensi Cardoso)
  <dc:title>rasbt/mlxtend: Version 0.19.0</dc:title>
All versions This version
Views 1,4408
Downloads 1732
Data volume 2.4 GB35.0 MB
Unique views 1,2848
Unique downloads 652


Cite as