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1 Introduction

Parkinsons̓ disease (PD) is a commonmotor neurodegenerative disorder, characterized
in part by the progressive loss of pigmented dopaminergic neurons from the Substan-
tia Nigra pars compacta. The main neuropathological hallmark of PD is the progressive
accumulation of α-synuclein in fibrillar aggregates named Lewy Bodies (in the soma)
or Lewy Neurites (in neurites) [1]. Interestingly, Lewy pathology follows a predictable
pattern of progression in the brain suggesting that α-synuclein can propagate from neu-
rons to neurons [2]. Such observation, common tomany neurodegenerative diseases [3],
prompted initiatives tomodel and predict pathology progression in the brain of patients
with neurodegenerative disorders.

In 2012, Raj and colleagues developed a Network DiffusionModel (NDM) to predict atro-
phy progression in dementia [4]. For this purpose, they compared Magnetic Resonance
Imaging acquisitions fromhealthy young subjects, healthy old subjects, and old patients
suffering from either Frontotemporal Dementia or Alzheimer s̓ Disease. Their study sug-
gested that patterns of atrophy within the dementia spectrum could be explained by
transmission of the disease along neuronal pathways. Using their model, they demon-
strated a path for predicting future atrophy in individuals starting from baseline. The
NDM model was later applied to other diseases using various kinds of data. In 2017,
Mezias and Raj showed in a mouse model that the spread of amyloid-β pathology, in-
volded in Alzheimer s̓ disease, was driven by spatial proximity but not network connec-
tivity [5]. At the opposite, progression of tau pathology, also involved in Alzheimer s̓
disease and other tauopathies, was better recapitulated by connectivity [6]. In 2019, Hen-
derson and colleagues reported that progression of α-synuclein pathology, similary to
tau pathology, is largely predicted by anatomical connectivity between brain structures
[7].

We here replicated the core of the NDM applied to α-synuclein spread in mice as im-
plemented by Henderson and colleagues [7]. R scripts, connectivity matrix and experi-
mental datasets were made fully accessible by the authors on GitHub allowing an easy
process. We took inspiration from the original code in the way to build the connectivity
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matrix. It was then used as a tool to generate results and comparewith the Python imple-
mentation. In order to ease comparison between the two codes, we kept some function
and variable names similar. Overall, we were able to reproduce qualitatively and quan-
titatively the main results of the publication. The aim of the present replication is not
to fully replicate the entire paper but to focus on the core model and immediate results
(shown in Figures 4 and 5 in the original paper).

2 Background

2.1 Graph Theory and brain connectivity
Henderson et al. combined quantitative pathology mapping in the mouse brain with
network modeling to understand the spatiotemporal pattern of spread of α-synuclein
pathology [7]. Graph theory is a branch of mathematics applicable to Neuroscience.
The brain is a complex system that can be modeled as a network or graph. When ap-
plied properly, Graph theory can offer important insights into different aspects of brain
networks such as architecture, evolution, development, or clinical disorder [8].

Networks are defined as a collection of elements (or nodes) and their pairwise links (or
edges) that can be summarized in the form of a connectivity matrix (named adjacency
matrix). Depending on the type of graph, edges can have binary values (present: 1 - ab-
sent: 0) or actual weights reflecting connection strength. A graph is called undirected
when an edge e reciprocally connects nodes Va and Vb. Conversely, a graph is named
directed when the edge e is projecting from Va to Vb but not from Vb to Va.

Thanks to the initiative from the Allen Institute for Brain Science s̓ Mouse Connectiv-
ity Atlas (MCA), the mouse brain mesoscale connectome is now freely accessible for
the neuroscience community [9]. In a matrix, connectivity is represented as ”incoming”
along rows and ”outgoing” along columns. From the adjacency matrix, the in-degree
and out-degree distributions can be computed as respectively the sum of all entries in
the corresponding row and the sum of all entries in the corresponding column and are
represented in diagonal matrices.

The Laplacian graph is a matrix used to explore the properties of a network. It is com-
puted using the adjacency matrix and either the in-degree or out-degree graph depend-
ing on the applications.

2.2 Model description
The model used by Henderson et al. requires the mouse brain connectome (discussed
in the previous section) and whole brain α-synuclein pathology quantification.

The experimental model of α-synuclein pathology propagation used in the study is the
now classical α-synuclein pre-formed fibrils (PFFs - 5µg) unilateral injection in the dor-
sal striatum of non-transgenic mice (NTG) [10, 7]. Following inoculation, NTG mice
were terminated at 3, 6, or 9 months post-injection (MPI). Brain pathology was assessed
using traditional immunohistochemical methods to detect α-synuclein phosphorylated
on Serine129 (p-α-syn). Quantification (as percent of region occupied by immunostain-
ing) was performed on both brain hemispheres (ipsilaterally and contralaterally to the
injection point) in 58 different regions. Thus, the p-α-syn dataset provided by the au-
thors on their repository is an CSV sheet with values for 5 mice per group and timepoint
for all 116 brain regions.
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Using the dataset from [9] for synaptic connection, the authors generated a directed
and weighed connectivity graph G = V,E whose nodes V are N cortical and subcorti-
cal grey matter regions and whose edges eij ∈ E represent an axonal projection from Vi

to Vj . They then defined the weighed adjacency matrix of G as A = [Aij ] generating a
final parcellation of 116 regions.

The magnitude of the observed p-α-syn staining of all N nodes at a time t is the vec-
tor xt. The predicted regional p-α-syn x̂t is a function of the adjacency matrix A and a
seed region seed (∈ E) and is computed as shown in (1):

x̂t = e−cLtxo (1)

Where:

• c is a constant designed to achieve an optimalmatchwith the data as the empirical
diffusion constant for the pathology is a priori unknown.

• t stands for the timepoint of the prediction.

• L is the out-degree Laplacian matrix computed as shown in (2):{
−Aij for i ̸= j∑N

j=1 Aij for i = j
(2)

• x0 is the seed vector computed as shown in (3):

x0

{
0 for i ̸= seed

1 for i = seed
(3)

3 Material and Methods

Henderson et al. coded their model using R andMATLAB. Codes and dataset weremade
fully accessible on GitHub by the authors. In order to only rely on opensource and free
tools, we decided to reproduce the model in Python 3. We looked for operating systems
intercompability and ran our code successfully on both Microsoft Windows 10 and Ma-
cOS 11.2.3. Table 1 lists the required packages and their versions. Our code (and the
associated datasets) is fully accessible in a GitHub repository https://github.com/MathieuBo/
PathoSpreading.

Package Version
NumPy 1.17.0
Pandas 1.1.5
Seaborn 0.11.1
Matplotlib 3.3.2

SciPy 1.5.2
Statsmodels 0.12.1

tqdm 4.7.2

Table 1. Description of required packages
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4 Results

4.1 Network model of pathological α-synuclein spread
The model comprises a single free parameter c, the seeds̓ diffusivity coefficient, that is
used to scale the model to experimental results. The model is initiated by creating the
seed vectorx0 for the inoculated region: here the caudoputamen (CPu). Then, themodel
iterates over possible the values of c ∈ [0, 10]. We selected the value of c that maximizes
model fit, defined as the Pearsons̓ correlation r between log10 xt and log10 x̂t averaged
over all timepoints. Table 2 summarizes the results including selected c value and cor-
relation results. Correlation results for each timepoints are also plotted in Figure 1A-C
(to be compared with Figure4a from the original article). Overall, we obtained a perfect
replication, both quantitatively and qualitatively, of the original published results.

Henderson et al. Replication
Best c 1.625 1.625
MPI 1

Pearsons̓ r 0.559 0.559
p-value 8.085e−9 8.085e−9

MPI 3
Pearsons̓ r 0.696 0.696
p-value 3.451e−17 3.451e−17

MPI6
Pearsons̓ r 0.648 0.648
p-value 2.638e−14 2.638e−14

Table 2. Data correspondence between the reproduced results and the original article. The results
have been rounded up to the third decimal. P -values for Pearsons̓ correlation tests were corrected
for multiple comparisons using Bonferroni s̓ method. MPI: month(s) post injection.

Then, we performed some control experiments on the model to assess its robustness.
First, as in the original article, we randomly seeded the diffusion model in all brain
regions and calculated the value c. The ʼtrueʼ seeded region (CPu) was among the best
fits (97th percentile), at each timepoint (Figure 1D). Then, we implemented 2 additional
controls: we randomly shuffled (over 150 iterations) the connectivity matrix (Figure 1E)
and the p-α-syn matrix (Figure 1F), as in [11]. For each control experiment, we plotted
the corresponding value of r. One can appreciate the profound performance loss in the
different control experiments. Our results confirm that the spatiotemporal spread of
pathological α-synuclein is driven by connectivity.

4.2 Differential regional vulnerability is correlated with α-synuclein expression
Intrinsic regional vulnerability is hypothesized to be a critical factor in the development
of brain pathology related to α-synuclein or other pathogenic proteins [12]. Henderson
et al. thought to investigate that aspect using the connectivity-based model. To do so,
they used the difference between prediction and experiment (i.e. the residues of the
linear regression) as a measure of relative vulnerability. Regions with higher p-α-syn
staining than predicted were defined as vulnerable while the ones with lower values
than predicted were considered resilient (Figure 2A). We here present an example at 6
months post-injection (Figure 2B). We used a ʼlollipopʼ plot to help appreciate the dis-
tance to linear regression. Residues presented a bell shape-like distribution centered
on 0 (Figure 2C). We plotted the vulnerability averaged over the 3 timepoints (Figure
2D). Similarly to the original article, we observed that anterior cortical regions (motor
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A B C

r = 0.69r = 0.56 r = 0.65

D E F

Figure 1. Network diffusion model based on anatomical connectivity explains pathological α-
synuclein spread. (A-C) Scatterplots of log10(predicted) p-α-syn surface versus experimentally-
measured log10(p-α-syn surface) values at 1 month (A), 3 months (B), and 6 months (C). The blue
lines are the linear correlations between experimental and predicted values (shaded areas: 95%
confidence interval). Values at the bottom right of each panel are the Pearsons̓ correlation co-
efficient r between experiments and model s̓ predictions. (D-F) Experimental controls: random
seeding in other brain regions (D); shuffle of connectivity matrix (E); and shuffle of p-α-syn ma-
trix (F). For each control experiment, the orange marker represents the actual model fit. MPI:
month(s) post injection. Path: experimentally-measured p-α-syn surface.

cortex for example), the piriform cortex or the amygdalar region are highly vulnerable.

To determine whether model performance could be improved by the addition of other
components, Henderson et al. seek out for factors that could contribute to regional
vulnerability. An immediate assumption is that local levels of messenger-RNA (mRNA)
encoding for α-synuclein could influence the future accumulation of α-synuclein in ag-
gregates. To directly test that hypothesis, the model was modified to account for re-
gional levels of α-synuclein mRNA (Figure 2E) by direclty modifying the adjacency ma-
trix A = S × A, where S is the diagonal matrix of the vector R containing the regional
levels of α-synuclein mRNA for each brain region of A such as:

S =

{
Ri for i = j

0 otherwise
(4)

Model fitting andperformance estimation remained similar. Incorporation ofα-synuclein
trancript s̓ levels in the network diffusion model improved model performance by up
12% of added explained variance (Figure 2F-H). Here also, we perfectly replicated the
original results both qualitatively (shown in Figure 2F-H) and quantitatively (shown in
Table 3). Overall, these data suggest that SNCA gene expression is an important factor
impacting the vulnerability of regions and subsequently pathology spread.
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Henderson et al. Replication
Best c 0.414 0.414
MPI 1

Pearsons̓ r 0.580 0.580
p-value 1.401e−9 1.401e−9

MPI 3
Pearsons̓ r 0.727 0.727
p-value 2.421e−19 2.421e−19

MPI6
Peasrons̓ r 0.739 0.739
p-value 2.965e−20 2.965e−20

Table 3. Data correspondence between the original article and the reproduced results using the
model incorporating α-synuclein mRNA levels. The results have been rounded up to the third
decimal. P -values for Pearsons̓ correlation tests were corrected for multiple comparisons using
Bonferroni s̓ method. MPI: month(s) post injection.

4.3 In silico seeding of alternative regions
To examine the generalizability of themodel (i.e. the ability to apply to other conditions),
Henderson et al. proceeded to in silico seeding of alternative regions such as the Piriform
Cortex (Pir) and the Substantia Nigra (SN). Figure 3 displays the p-α-syn spread at 1, 3
and 6 month(s) post-injection after seeding the model with either the Pir or the SN. We
successfully obtained similar predictions after seeding in either the Pir or the SN. In
silico injection in the Pir remarkably corresponds to previous semi-quantitative p-α-syn
grading study [14] (Figure 3A). On the other hand, in silico injection in the SN resulted
in slow propagation through the nigrostrial tract to first the caudoputamen and then
to cortical regions (Figure 3B). The observed pattern following SN injection mimicks
previous experimental results and the staging of human cases [2, 15, 16]. Taken together,
these findings support the ability of the Diffusion Network model to generalize data
predictions.

5 Conclusion

In this article, we successfully replicated the computational model created by Hender-
son et al. [7] in Python.

TheNetwork DiffusionModel initially developed by Raj et al. [4] and recently adapted by
Henderson et al. [7] is a powerful tool to understand the spread of p-α-syn in the brain.
In its initial form, the model is solely based on anatomical connectivity between brain
regions. Despite its simplicity, the model is able to predict 31% to 47% of the total vari-
ance. In a second version, the endogenous α-synuclein expression (at the mRNA level)
is added to the model. The addition improves model performance (up to 12% of added
explained variance), although a quantitative analysis should be performed in the future.

Similarly to what is observed in preclinical models of synucleinopathies or in the brain
of Parkinsons̓ disease s̓ patients, α-synuclein pathology is composed of ʼislandsʼ of vul-
nerable neurons susceptible to developing pathogenic protein inclusions. By compar-
ing the observed and predicted p-α-syn staining based on anatomical connectivity, the
model allows to explore regional vulnerability. Finally, seeding in different regions such
as the Pir and the SN supports the network diffusion model generalizability. Overall,
this model is attractive as it is simple, easily handled, and replicable.
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Nonetheless, the model is not without limitations. Other experimental datasets (investi-
gating other seeding regions or using alternative markers for pathological α-synuclein)
are still required to quantitatively assess the ability of the model to generalize the pre-
diction of α-synuclein spread. Another barrier comes from the available connectivity
data [9]. The connectivity matrix used by Henderson et al. and ourselves is at the
mesoscale. One implication, for example, is that brain structures are considered ho-
mogenous, hence not taking into account the laminar cortical organization for example.
The observation of a distinct distribution of the α-synuclein pathology in cortical layer
suggests that lower scale connectivity data could help to capture overlooked events.

Modeling disease propagation in the brain is challenging and often reductionist per se.
Indeed, during the course of disease, the brain changes according to at least two parallel
processes: the ”Dynamics On Network” and the ”Dynamics Of Network” [17]. The first
one is related to processes that occur atop a static structure as, for instance, α-synuclein
spread. The second defines the brain network changes over time (e.g. neurodegenera-
tion or extracellular remodelling [18]). A major challenge remains in modeling both
these ”on” and ”of” dynamics. If we were only to understand one dynamic and leave the
other dynamic unexplored, we could imagine to still be a step away from the reality of
the pathology.
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Figure 2. Differential regional vulnerability is correlated with α-synuclein expression. (A) Concep-
tual framework for the assessment of regional vulnerability of brain regions. We here show the
scatterplot of log10(Predicted) and log10(Measured) at 6 months post-injection. The black dashed
line is the linear regression between prediction and experimental observation. The red area in-
dicates brain regions with higher measured p-α-syn staining than predicted by the model, hence
ʼvulnerable .̓ Conversely, the green area indicates brain regions with lower observed p-α-syn stain-
ing than predicted by connectivity, hence ʼresilientʼ brain regions. (B) Example of a lollipop plot
for the 6 months timepoint highlighting the distance to the mean linear regression (i.e. residues
- dashed blue lines). (C) Distribution of linear regression residues. The solid blue line is the ker-
nel density estimation of the distribution. (D) Heatmap of the residuals between the predicted
and measured p-α-syn staining plotted on an anatomical mouse brain as a measure of the rela-
tive vulnerability of regions averaged over the 3 experimental timepoints, using the Brainrender
package [13]. Note: the differences with the original article arise mostly from the use of different
rendering method. As shown by the numerical comparison in Table1, the ouput values were ab-
solutely similar. (E) Heat map of the α-synuclein mean expression energy values obtained from
the Allen Brain Atlas in situ hybridization study for each of the designated region. Expression
was normalized using min/max to ease visualization. Note: Henderson et al. used a divergent
colormap to represent a continous value, hence making it difficult to interpret regional varia-
tions. We here chose a sequential continuous colormap to improve the understanding. (F-H)
Scatterplots of log10(predicted) p-α-syn versus experimentally-measured log10(p-α-syn) values at
1 month (F), 3 months (G), and 6 months (H). The blue lines are the linear correlations between
experimental and predicted values (shaded areas: 95% confidence interval). Values at the bottom
right of each panel are the Pearsons̓ correlation coefficient r between experimental and predicted
pathologies. Path: experimentally-measured p-α-syn surface.
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Figure 3. In silico seeding of alternative regions in the mouse brain Predicted p-α-syn staining
after in silico seeding in the Piriform Cortex (A) or the Substantia Nigra (B) The injection site is
indicated on each slice by a blue asterisk. Both Figure A and B are displayed using the Brainrender
package [13]. Note: Henderson et al. used a divergent colormap to represent a continous value,
hence making it difficult to interpret regional variations. We here chose a sequential continuous
colormap to improve the understanding.
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