
AN FPGA BASED PARAMETRISABLE SYSTEM
FOR DISCRETE ORTHOGONAL TRANSFORMS IMPLEMENTATION

*A.Amira, A.Bouridane, M.Roula and F.Kurugollu

School of Computer Science
The Queen's University of Belfast

Belfast BT7 1NN, United Kingdom
*A.Abbes@qub.ac.uk

ABSTRACT

This paper presents novel architectures for efficient
implementation of Discrete Orthogonal Transforms (DOTs)
using an FPGA based parameterisable system. These
transforms are important in many signal and image
processing applications including image and speech
compression, filtering and coding. Two novel architectures
for DOTs using both systolic architecture and distributed
arithmetic design methodologies are presented. The first
approach uses the Modified Booth-encoder-Wallace trees
Multiplication (MBWM) algorithm for a systolic architecture
implementation. The second approach is based on both
distributed arithmetic ROM and accumulator structure, and
Offset Binary Coding technique (OBC). Implementations of
the algorithms on a Xilinx FPGA board are described.
Distributed arithmetic approach exhibits better performances
when compared with the systolic architecture approach.

1. INTRODUCTION

Transform methods are useful in many types of applications,
particularly if the features of interest can be characterised in
the transform domain [1]. DOTs are important in many
image and signal processing applications. The DFT, which is
central to most DSP applications, is the most popular and the
oldest among these DOTs. Discrete Hartley Transform
(DHT) belongs to the family of sinusoidal transforms that
map temporal or spatial functions into frequency functions.
DHT accomplishes this in a manner similar to the better-
known Fourier Transform. The significant difference
between the Fourier Transform and Hartley’s alternative is
that the Hartley transform uses only real values, i.e., no
complex numbers [2]. Among all the sinusoidal transforms,
the DCT is the most efficient transform for compression of
speech and image data. Also, it is well known from the
literature that the Fast Hadamard Transform (FHT) belongs
to the rectangular transforms and can be efficiently used for
the calculation of the DFT for implementing adaptive filters
and spectrum filter realisations. The usual frequency -domain
FIR filtering problem can easily be converted into a Walsh
frequency domain-filtering problem, and a similar structure
results in possible alternative for infinite-impulse response
filter implementations. The advantages of the 2-D FHT,
which is based on 1-D FHT also known as S or sequential

transform in lossless image compression, are well known. All
the transforms previously described are based on matrix-
vector multiplication. The SVD, which is an eigen-vector
based matrix-matrix multiplication transform, is used in
speech compression and image enhancement [3], [4],[5], [6].
It is the aim of this paper to develop efficient architectures,
ideally suited for a fast computation of the DOTs using an
FPGA based parameterisable system. Systolic Architecture
(SA) and Distributed Arithmetic (DA) design methodologies
have been described for the implementation of DOTs. The
MBWM algorithm has been used for the implementation of
the systolic architecture, due to it suitability for a Virtex
FPGA implementation [7]. OBC technique has been
exploited to develop the mathematical model in order to
reduce the ROM size, the area required by the design, and to
speed up the computation time in the case of DA design
methodology.
The architectures proposed in this paper have been designed
and targeted to the Xilinx XCV1000E of the Virtex-E family
which has the following important features [7]:
• Fast, and high-density Field-Programmable Gate Array;
• Flexible architecture that balances speed and density;

and
• Built-in clock- management circuitry.
The composition of the rest of the paper is as follows. The
system architecture for designing and implementing the
DOTs is presented in section 2. The mathematical model
for the DOTs algorithm is given in section 3. Section 4 is
concerned with the proposed architectures using both SA
and DA techniques. The analysis of the implementation
results obtained is given in section 5. Concluding remarks
are given in section 6.

2. SYSTEM ARCHITECTURE FOR
DESIGNING AND IMPLEMENTING THE

PROPOSED ARCHITECTURES
The proposed system architecture for designing and
implementing the DOTs as shown in Fig.1 consists of:
i) A GUI for supporting experimentation with

different design parameters (transform length,
input data word length, result word length,
coefficients word length) and methodologies (SA,
DA) to enable the user to explore e.g. speed/area
trade-offs;

ii) The library of architectures for DOTs including
DCT, DHT … FHT. The application user has the
ability to choose and download existing files from
the Standard Template Library (STL), to generate
new files and to save those files either to the STL
or another application directory;

iii) A generator, which automatically produces VHDL
code given the user, selected parameters and
settings;

iv) A mechanism for making use of the standard
(Xilinx) synthesis tools; and

v) A coprocessor which is based on the Xilinx
XCV1000E of the Virtex-E family.

The objectives of the work presented in this paper are as
follows:
i) Using FPGA as low cost accelerator for DOTs

implementation;
ii) Using FPGA to build systems with advantages

over conventional technology such as ASICs,
DSPs and CPUs in any of the areas of: Time-to-
market, performance, power, size/ weight,
flexibility and life cycle cost;

iii) Developing a library of DOTs where this library
can be extended for a range of other transforms, the
library should be more extensive than existing
systems;

iv) Developing novel, efficient and scalable
architectures for DOTs, where both the area and
the speed can be estimated for any transform with
any specific design parameters and methodologies;

v) Enabling application users to concentrate on
experimenting conveniently with different
transforms and techniques to investigate best
area/speed trade-offs, rather than concentrating on
the low level (and complex) structure of FPGAs;
and

vi) Exploiting the potential of more recent FPGA
devices (e.g. Virtex-E).

3. MATHEMATICAL MODEL
Typically, a DOT algorithm is defined as matrix-vector
multiplication:

−

=

=
1

0

N

k
kiki XAY (1)

where][ikAA = is the kernel matrix of an orthogonal
transform,][kXX = is the input vector data,][iYY = is the
result vector and N is the transform length. This problem can
be resolved following the proposed design methodologies:

3.1. DOTs based Systolic Architecture (SA)
If the elements of the input vector X is represented using the
2's complement number representation, then:

−

=

−
− +−=

2

0
,

1
1, 22

W

m

m
mk

W
Wkk xxX (2)

where mkx , is the mth bit of kX , (which are zero or

one). 1, −Wkx is the sign bit, where W is the word length.
Equation (2) can be rewritten as follows:

 m
mkmk

W

m
mkk xxxX 4)2(12,2,

1)2/(

0
12, +

−

=
− −+= (3)

or: m
W

m
mk DX 4)(

1)2/(

0

−

=

= (4)

where: 0 1, =−kx and }2,1,0,1,2{ m −−∈D
By substituting (4) into (1), the output vector Yi can be
computed as follows:

−

=

−

=

=
1

0

1)2/(

0

4)(
N

k

m
W

m
miki DAY (5)

such as:

−

=

−

=

=
1

0

1)2/(

0

4)(
N

k

m
W

m
miki DAY (6)

The results Yi are given by equation (7) as follows:

−

=

−

=

=
1

0

1)2/(

0
, 4)(

N

k

m
W

m
miki PPY (7)

where :)(, mikmik DAPP = , based on the modified
Booth encoder algorithm as explained in Table 1.

 GUI
User

DOTs Library

DCT DHTFHT

Generator
Design parameters

Design methodologies

Xilinx
Synthesis

ToolsFPGA
Configuration

 Files

Structural
and Parametrisable

VHDL code

Standard Template Library

Host
Machine

Virtex-ETM

(FG680 Package)

SRAM

SRAM

SRAM

SRAM

I/O

VHDL

Files

Fig 1. Proposed System Architecture for DOTs Implementation

xk,2m+1 xk,2m xk,2m-1 Dm PPik,m

0 0 0 0 0
0 0 1 1 + ikA
0 1 0 1 + ikA
0 1 1 2 2 ikA
1 0 0 -2 -2 ikA
1 0 1 -1 - ikA
1 1 0 -1 - ikA
1 1 1 0 0

Table 1. Modified Booth encoder algorithm

3.2. DOTs based Distributed Arithmetic (DA)
The OBC technique is introduced to reduce the ROM size by
a factor of 2 to 2N-1 when using DA principles:
Suppose that { } sAik ' are L -bits constants and { } sX k ' are
written in the fractional format as shown in equation (2).
Rewrite (2) as:

()[]

() () ()�

�
�
�

�
−−+−−=

−−=

−

=

−−
−−−−−−

1

1

1
1,1,1,1, 22

2
1

2
1

W

m

Wm
mWkmWkWkWk

kkk

xxxx

XXX
 (8)

where

 ()
−

=

−−−
−−− ++−=−

1

1

1
1,1, 22

W

m

Wm
mWkWkk xxX (9)

Define

()�

�
�

−=−−

−≠−
=

−− 1,

1,

1,1,

,,
,

Wmforxx

Wmforxx
d

WkWk

mkmk
mkj

 (10)

And { } .1,1, +−∈mkd Equation (8) can be rewritten as:

 () �

�
�
�

�
−=

−

=

−−−
−−

1

0

1
1, 22

2
1 W

m

Wm
mWkk dX (11)

Using (11), (1) can be written as:

()

()
−

=

−
−

=

−
−

=
−−

−

=

−

=

−−−
−−

�

�
�

�

�
−�

�
�

�
�

�

�
=

�

�
�
�

	
−=

1

0

1
1

0

1

0
1,

1

0

1

0

1
1,

2
2
12

2
1

22
2
1

W

m

W
N

k
ik

m
N

k
mWkik

N

k

W

m

Wm
mWkiki

AdA

dAY

 (12)

Now define

 10,
2
11

0
, −≤≤=

−

=

WmfordAD
N

k
mkikim

 (13)

And
−

=

−=
1

02
1 N

k
ikextrai AD (14)

Therefore, Yi can be computed as:

 ()
−

=

−−−
−− +=

1

0

1
1, 22

W

m

W
extrai

m
mWii DDY (15)

Equations (13) and (14) characterise the OBC scheme. Table
2 shows the content of each the ROM for the case of N=3.
It is obvious that the Dim values are mirrored along the line
between the 8th and the 9th rows in the ROM table. In other
words, the term Dm has only 2N-1 possible values depending
on the mix , values. Therefore it is possible to reduce the

ROM size by a factor of 2. Table 3 illustrates the new ROM
table.

x1,m x2,m x3,m The content of the ROM i
0 0 0 () 2/321 iii AAA ++−
0 0 1 () 2/321 iii AAA −+−

 0 1 0 () 2/321 iii AAA +−−
0 1 1 () 2/321 iii AAA −−−
1 0 0 () 2/321 iii AAA −−
1 0 1 () 2/321 iii AAA +−
1 1 0 () 2/321 iii AAA −+
1 1 1 () 2/321 iii AAA ++

Table 2. The content of ROM I

x1,m x2,m x3,m The content of the ROM i
0 0 0 () 2/321 iii AAA ++−
0 0 1 () 2/321 iii AAA −+−

 0 1 0 () 2/321 iii AAA +−−
0 1 1 () 2/321 iii AAA −−−

Table 3. The new content of ROM I

4. DOTs ARCHITECTURES

4.1. DOTs based (SA)
The heart of the algorithm given by equation (1) is the
multiply-accumulate component. This part takes two values
(one row value from the A kernel matrix and the column
value from the input date vector), multiplies them and adds
the result to the running total. Once N multiplications and
additions have been completed, the result is one value of the
C matrix. The MAC has been used in this algorithm is
basically based on the MBWM as shown in Fig.2 with
(N=3).
It is worth mentioning that the system produces N results Y
after O (2N) clock cycles based on the multiple accumulate
technique and requires N MACs.

M
odified Booth encoder

Aik Xk

4-2 Unit Adder

4-2 Unit Adder

4-2 Unit Adder

3-2 Unit Adder

32 bit adder

Booth encoders

Wallace Tree Level 1

Wallace Tree Level 2

Wallace Tree Level 3

Compressor

Final Adder
(not pipelined)

B

Selector

Selector
Selector

Selector
Selector

Selector

BBB B B B B B B

4-2 Unit Adder

�

�
�
�

�

�

11

12

13

A
A
A �

�
�
�

�

�

1

2

3

X
X
X

FF

FF

Fig 2. Proposed MAC for DOTs computation

Features Proposed
Structure

Structure
of [2]

Structure
of [4]

Computation time (2N)T (2W)T (2WN)T

Area Complexity O(N) O(N2) O(N)

Table 4. Comparison of proposed structure with the
existing structures ([2],[4]) for computation of the

DOTs

4.2. DOTs based (DA)
Fig.3 shows a typical architecture for the computation of
DOTs (N=3) using DA principles with OBC scheme. The
computation starts from the LSB of ix , i.e m=0. The XOR
gates are used for address decoding, the MUX with the
constant Diextra provides the initial value to the shift-
accumulator and the XOR gate after the ROM is used to
inverse the output of the ROM after W clock cycles. Two
control signals S1 and S2 are required, where S1 is 1 after W
clock cycles and 0 otherwise, and S2 is 1when m= W, and 0
otherwise.

Feature Proposed
Structure

Structure
of [1]

Structure
of [6]

Computation
time

W (2N-1) (W+log2N) 2N-1

Table 5. Comparison of proposed structure with the
existing structures ([1],[6]) for computation of DOTs

The input vector elements kx are fed from the north in
parallel/serial fashion while the correspondent's Dm values
for each vector [Aik] of the kernel matrix are stored in each
ROM.
It is worth mentioning that the result vector produces the
three coefficients after W clock cycles.

5. FPGA IMPLEMENTATION
The proposed architectures described above have been
implemented for (N=4, W=8) using a Xilinx Virtex
XCV1000E FPGA series board with Target Package: fg680.
The designs were carried out using the same Relative
LoCations (RLOC) attributes to obtain efficient placement.
The designs are modular, regular and can be implemented for
larger transform and input data word lengths. Table.6
illustrates the performance obtained for the proposed
architectures in the case of N= 4 and W=8. DA technique
shows significant improvements and better performances
when is compared with SA technique in terms of speed and
area consumed by the design.

Architectures Slices Flip-
Flops

4-input
LUT

Speed
(MHz)

SA 540 128 1024 34
DA 90 117 123 122.13

Table 6. Implementation report for
SA and DA techniques (N=4, W=8)

6. CONCLUSION
Due to the importance of the DOTs in image and signal
processing applications, a parametrisable system for
designing and implementing this kind of transforms has been
developed. Two novel architectures have been presented in
this paper. The first architecture is based on SA technique
while the second one is based on DA principles together with
the use of OBC technique. The effectiveness of the two
approaches has been discussed and shown that DA approach
provides better performances in terms of speed and area
when is compared with the SA approach.

7. REFRENCES
[1] L.Wen Chang and M.Chang Wu, "A bit level systolic
array for Walsh-Hadamard transforms." Signal Processing
Vol 31, pp 341-347, 1993.
[2] S.S. Nayak and P.K. Meher, "High throughput VLSI
implementation of discrete orthogonal transforms using bit-
level vector-matrix multiplier." IEEE Trans.on Circ.& Syst.
II, Analog and Digital Sig. Proc., Vol.46, No.5, pp.655-658.
1999.
[3]. A. Amira, A. Bouridane, P. Milligan and M.Roula " An
FPGA Implementation of Walsh Hadamard Transforms for
Signal Processing." Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing
(ICASSP 2001), pp 1105 - 1108, Vol: 2, May 7-11, 2001,
Salt Lake City, Utah, USA.
[4] A. Amira, A. Bouridane, P. Milligan and P. Sage "A
High Throughput FPGA Implementation of A Bit-Level
Matrix Product." Proceedings of the IEEE Workshop on
Signal Processing Systems Design and Implementation
(SIPS), pp 356-364, October 2000, Lousiana, USA.
[5]. A. Amira, A. Bouridane, P. Milligan and M. Roula
"Novel FPGA Implementations of Walsh Hadamard
Transforms for Signal Processing." To be published in the
Journal of IEE Proceedings on Vision, Image and Signal
Processing.
[6] S.Y. Kung, "VLSI Array Processors." Prentice Hall,
1988.
[7] URL: www.xilinx.com.

ROM 1

ROM 2

FF

SR0

1 extraD 1

FF

SR

mx ,21 mx ,31

0

1 extraD 2

ROM 3
 FF

SR0

1 extraD 3

mx ,11

S1

S2

S2

S2

1y

2y

3y

P
S
C

P
S
C

P
S
C

PSC: Parallel to Serial Converter
FF: Flip Flop
SR: Shift Register

Fig 3. DOTs based OBC using DA Principles (N=3)

http://www.xilinx.com/

	School of Computer Science
	1. INTRODUCTION
	3. MATHEMATICAL MODEL
	The OBC technique is introduced to reduce the ROM size by a factor of 2 to 2N-1 when using DA principles:

