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ABSTRACT

In this paper we study the performance of the root-MUSIC al-
gorithm and its extensions to non-ULA configurations using real-
world antenna arrays. These arrays are non-ideal and built using
directional elements, where each sensor has its own directional
beampattern. We describe the Element-Space (ES) root-MUSIC
algorithm for Direction-of-Arrival (DoA) estimation [1]. It uses
the manifold separation technique and allows extending the known
root-MUSIC algorithm to non-ULA configurations. We explain
how to select the number of modes in order to minimize the array
modelling error, when applying the manifold separation technique.
Finally, we evaluate the ES-root-MUSIC algorithm using real-world
antenna array data. The simulation results demonstrate that statisti-
cal performance close to the Cramér-Rao Bound is obtained using
real-world arrays with all their imperfections.

1. INTRODUCTION

In array signal processing it is often convenient to work with ar-
rays having a steering vector matrix with a Vandermonde structure.
For example, this allows using rooting-based Direction-of-Arrival
(DoA) estimation algorithms having a low computational complex-
ity, such as root-MUSIC and root-WSF [3]. Originally, these algo-
rithm were designed for ideal Uniform Linear Arrays (ULA). Later,
techniques known as array interpolation [2] and beamspace trans-
form [3]-[4] have been developed in order to map the steering vec-
tors of a planar array onto steering vectors of a ULA-type array,
called the virtual array. These preprocessing techniques often in-
troduce mapping errors in the form of bias and excess variance [4].
This leads to DoA estimates which are not statistically efficient.

Recently, we have proposed an algorithm called Element-Space
(ES) root-MUSIC [1], which provides 1-D (azimuth only) DoA es-
timation of non-coherent sources. The ES-root-MUSIC algorithm
has low computational complexity, and processes the data recorded
by the array directly in element-space. Hence, no transformation
or interpolation of the data is required, and mapping error can be
avoided. Instead, it uses a convenient remodelling of the antenna
arrays steering vector for performing fast (search-free) DoA esti-
mation on arbitrary array configurations.

In this paper, we have considered five real-world antenna arrays
with different configurations in order to test both the applicability
and the robustness of the ES-root-MUSIC algorithm [1]. The al-
gorithm can handle arbitrary array configurations since it jointly
exploits the concept of manifold separation [1]-[7] and Effective
Aperture Distribution Function (EADF) [8]-[9]. The EADF can be
expressed by the IDFT (Inverse Discrete Fourier Transform) of cal-
ibration measurements and it represents a sufficiently accurate de-
scription of the real-world array including array imperfections. The
calibration measurements, used to compute the array model, con-
tain array non-idealities, such as mutual coupling between sensors,
antenna manufacturing errors, sensors orientation and position. By
simulation results, we show that the ES-root-MUSIC is robust to
array imperfections and it can be applied to arrays with both direc-
tional or omnidirectional sensors.

This paper is organized as follows. First, the models for real-
world antenna arrays, and the employed signal model are presented.

In Section 3, we introduce the antenna arrays used for performance
evaluation. In Section 4, we give a brief overview of the ES-root-
MUSIC algorithm [1]. A way to compute an approximation of the
CRB (Cramèr-Rao Bound) for real-world arrays is also presented
here. In Section 5, we show the simulation results by means of
the statistical performance of ES-root-MUSIC when applied to real-
world arrays. Finally, Section 6 concludes the paper.

2. MODELLING OF REAL-WORLD ARRAYS

Let us have an array of N sensors, where every element has an
individual directional characteristic. We define the origin of the co-
ordinate system to be at the centroid of the array. The co-elevation
angle θ is measured down from the z-axis (assumed to be fixed at
θ = 90◦) and φ is the azimuth angle measured counterclockwise
from the x-axis in the xy-plane. The array steering vector of an
arbitrary antenna array can be expressed using the concepts of man-
ifold separation and EADF [1],[6]-[9].

The response of an antenna array to a far field source can be
modeled by measuring the directional characteristic of the antenna
in an anechoic chamber. For our purposes, we may measure the ar-
ray response to a far field source by moving the source around the
array at a fixed co-elevation angle θ = 90◦ along the azimuthal di-
rection in the range φ ∈ [−π,π). Alternatively, the same result can
be obtained by measuring the antenna by rotating the array about
its centroid. This creates a discrete set of measured points (along
the direction φ), which represents a discrete periodic function with
period 2π in azimuth. Hence, the beampattern of the n-th sensor
within the array can be expressed by an IDFT (Inverse Discrete
Fourier Transform) of the measured data (calibration data). We will
refer to this as Effective Aperture Distribution Function (EADF).

It is important to notice that the characteristic of each sensor is
measured by considering the whole antenna array. Consequently,
the measured beampattern of each sensor contains the influence of
all elements in the antenna array.

By using the transformed array calibration measurement
(EADF) and the concept of manifold separation, we can define the
beampattern of the n-th sensor bn(φ) of a real-world array as

bn(φ) = gnd(φ)+O(M) , (1)

where gn ∈ C
1×M is the characteristic vector (EADF) of the n-th

sensor and d(φ) ∈ C
M×1 is the Vandermonde structured vector

d(φ) =
1√
M

[
e−j M−1

2 φ, . . . , e−jφ,1, ejφ, . . . , ej M−1
2 φ]T

. (2)

In practice, the EADF vector gn is computed using the IDFT of
the array calibration measurements. Here, M denotes the number
of modes and O(M) represents a modelling error, which may be
made infinitesimally small by increasing M. For details about the
selection of M, see Section 2.1.

In real-world antenna arrays, every sensor has a unique beam-
pattern, which is influenced by the neighboring sensors (mutual
coupling). As depicted in Fig. 1, the EADF of each sensor is dif-
ferent from the other ones. Since the EADF is determined from
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Figure 1: EADFs computed from the calibration data of the URPA,
which is described in section 3. Each line defines the characteris-
tic function of one of the sensors in the array. Due to its specific
beampattern and mutual coupling, each element is described by a
different EADF.

array calibration measurement, we can state that the EADF repre-
sents a sufficiently accurate description of the array. A comparison
between the EADFs of an ideal and a real-world array can be found
in [5].

The manifold separation technique expressed in eq. (1) has an
useful property. It is easy to differentiate. In fact, since the charac-
teristic vector gn is independent from the unknown angular param-
eter φ [7], the derivative of the n-th sensor beampattern with respect
to φ can simply be expressed as [8],[9]

δn(φ) =
∂bn(φ)

∂φ
= gn

∂d(φ)

∂φ
. (3)

Equation (3) is exploited in Section 4.1 for deriving the CRB of
practical antenna arrays.

2.1 Selection of the Number of Modes

The selection of the number of modes M in gn, eq. (1), is a crit-
ical step in modelling an antenna array, because this controls the
modelling error O(M). Observe that due to the structure of the
Vandermonde vector d(φ), M is an odd number.

As described in [1], in case of an ideal array, the number of
modes may by chosen such that the modelling error O(M) becomes
arbitrary small. Hence, we can choose the number of modes in the
range N ≤ M ≤ Q, where Q is the number of calibration angles.
On the other hand, by using real-world calibration data, we have
an upper bound for selecting the number of modes. This limit is
given by the error floor in the computed real-world EADF, which
is mainly determined by the noise in the calibration measurements.
Consequently, we have a smaller selection range N ≤ M ≤ Mη ≤
Q, where |m|= (Mη−1)/2 is the index of the highest mode having
a magnitude larger than the calibration noise standard deviation σw .

In Fig. 2, we depict an example of EADF computed by using
both synthetical and measured calibration data. The plot represents
the EADF of a sensor in the array. We can see from the picture
that the modes with a magnitude larger than the measurement noise
level are similar in the ideal and real-world case. When calibration
measurements are used, the computed EADF saturates at the mea-
surement error level, while for simulated data the saturation point
is given by the computational accuracy of the used machine (e.g.
IEEE-754, 64 bit float ∼ 310 dB). As a result, the number of modes
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Figure 2: Ideal and real-world EADFs computed from Q = 360
simulated and calibration points, respectively. The measurement
noise level σ2

w limits the maximum number of eligible modes M.
The truncated EADF is within the truncation boundaries.

M is given by the number of modes having magnitude larger than
the calibration measurements noise, i.e. M = Mη .

Generally, the model of the antenna array will contain mod-
elling errors, which are proportional to the measurement noise vari-
ance σ2

w in the EADF. This error affects the performance of ES-
root-MUSIC by introducing a systematic error (bias) in the es-
timates. However, it is important to remember that in a real-
world radio system, the SNR is limited by the available transmit
power and the receiver noise. Consequently, whenever the SNR
� min

φ
(‖b (φ)‖)/O(M), the residual modelling error can be ne-

glected and eq. (1) still holds. In other words, if the bias created
by O(M) is smaller than the variance of the DoA estimates at the
highest achievable SNR, the bias in the DoA estimates can be ne-
glected because it is still significantly smaller than the variance of
the estimates.

The selection of the number of modes also defines the cutoff
points of the EADF, see Fig. 2. The truncation of the EADF has
two main effects. First, it reduces the amount of data that we have
to store [8]. Second, truncating the EADF improves the accuracy of
the array data model by a factor of ∼ 10 log10 (Q/M) in SNR. This
is an improvement compared to algorithms working directly with
the calibration measurements.

2.2 Signal Model

We assume that there are P (P < N ) non-coherent narrowband sig-
nal sources on the xy-plane, impinging the array from directions
φ = {φ1, . . . ,φP }, where φ is the azimuth angle. Furthermore, we
assume that K snapshots are observed by the array. The array out-
put matrix X ∈ C

N×K may be written as

X = BS+N, (4)

where B = [b(φ1),b(φ2), . . . ,b(φP )] ∈ C
N×P , with b(φp) =

[b0(φp), b1(φp), . . . , bN−1(φp)]T ∈ C
N×1, is the array steering

vector matrix, S∈C
P×K is the signal matrix with rank(SSH ) = P

and N ∈ C
N×K contains the observation noise. The noise is mod-

elled as a stationary, second-order ergodic, zero-mean, spatially and
temporally, white circular complex Gaussian process.



Figure 3: Polarimetric Uniform Linear Patch Array (PULPA) with
N = 8 patch sensors (TU-Ilmenau).

Figure 4: On the LHS, Polarimetric Uniform Circular Patch Array
(PUCPA) with N = 24 patch elements. On the RHS, Stack Polari-
metric Uniform Circular Patch Array (SPUCPA) with N = 24 patch
sensors. Courtesy of TU-Ilmenau.

3. REAL-WORLD ANTENNA ARRAYS

In this section, the five real-world antenna arrays which have been
used for experimental results are described. The antennas were
designed for a center frequency f0 ∈ [5.2,5.4] GHz and have a
bandwidth of 120 MHz [8],[10]. The following four arrays were
provided by the Electronic Measurement Research Laboratory, TU-
Ilmenau, Germany.

In Fig 3, a Polarimetric Uniform Linear Patch Array (PULPA)
is depicted. This antenna has N = 8 patch sensors with a interele-
ment spacing d = 0.4943λ. Each element has one port for horizon-
tal and one port for vertical polarization.

In Fig. 4 (left), we show the N = 24 elements Polarimetric Uni-
form Circular Patch Array (PUCPA) and (right) the N = 96 ele-
ments Stack Polarimetric Uniform Circular Patch Array (SPUCPA).
The SPUCPA is comprised of 4 stacked rings of 24 polarimetric
patches. It has 192 output ports in total. The switch is arranged
inside the cylinder [8],[9].

On the left hand side of Fig. 5, the Uniform Circular Array
(UCA) with N = 16 conical elements is depicted. Examples of
sensors beampattern for this antenna array can be found in [5].

Finally, on the right hand side of Fig. 5, we show the Uni-
form Rectangular Patch Array (URPA) with N = 16 polarimetric
patch elements. The antenna was provided by the Radio Laboratory,
SMARAD CoE, Helsinki Univ. of Technology (HUT), Finland.

The goal of this paper is to study the statistical performance
of the recently proposed ES-root-MUSIC algorithm [1] using these
five real-world antenna arrays. As we will see in Section 5, this
DoA estimation algorithm can be applied to different array config-
urations, and it achieves statistical performance close to the CRB.

4. ELEMENT-SPACE ROOT-MUSIC

Here we briefly present the ES-root-MUSIC algorithm. For more
details, see [1]. In particular, we focus on the advantages given by
this algorithm for implementation on real-world systems.

In order to remodel the steering vector of an arbitrary array, the
ES-root-MUSIC algorithm exploits the manifold separation tech-

Figure 5: On the LHS, Uniform Circular Array (UCA) with N = 16
conical sensors (TU-Ilmenau). On the RHS, Uniform Rectangular
Polarimetric Array (URPA) with N = 16 patch elements (HUT).
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Figure 6: Statistical performance of ES-root-MUSIC when used on
the PULA with N = 8 sensors and M = 55 selected modes.

nique [1],[6],[7]. In this way, the array steering vector can be ex-
pressed as the product of the characteristic array matrix (EADF)
and a vector with a Vandermonde structure containing the unknown
parameter. The ES-root-MUSIC allows azimuthal DoA estimation
of non-coherent sources at a fixed elevation angle.

Combining eq. (1) and (4), we can rewrite the system model as

X = BS+N = GDS+N , (5)

where D ∈ C
M×P is a matrix formed as D = [d(φ1), . . . ,d(φP )],

and φ1, . . . ,φP are the true DoAs of the P non-coherent sources.
Here, G ∈ C

N×M is the EADF matrix (characteristic matrix of the
array) defined as

G = [g0,g1, . . . ,gN−1]
T , (6)

where gn ∈ C
1×M (n = 0, . . . ,N − 1) is the EADF vector of the

n-th array sensor, computed by selecting the M modes of the IDFT
of the calibration measurements [1],[8],[9], see Section 2.1.

The element-space array covariance matrix can be expressed by

Rx = EsΛsE
H
s +σ2

ηEηE
H
η = GDRsD

H
G

H +σ2
ηI , (7)

where I is the N ×N identity matrix, Rs is the P ×P signal co-
variance matrix, and Es and Eη span the N ×P signal and the
N × (N −P ) noise subspaces, respectively. The key idea used in
the derivation of the ES-root-MUSIC algorithm is that Es, B and
GD span the same subspace. Consequently, GD is orthogonal to
the noise subspace Eη [1].

Therefore, for a real-world array of arbitrary configuration, we
can express the pseudo-spectrum of the ES-MUSIC algorithm as [1]

Smusic(φ) =
(
d

H (φ)GH
EηE

H
η Gd(φ)

)
−1

, (8)



which allows applying fast (search-free) polynomial rooting algo-
rithms (e.g. root-MUSIC). By substituting z = ejφ into the M×1
Vandermonde structured vector d(φ), eq. (8) can be rewritten in
polynomial form. Hence the phase angles of the P roots closest to
the unit circle, zp, will yield the azimuth estimates, φ̂p = ∠(zp), of
sources at a given elevation angle.

For practical systems, the proposed ES-root-MUSIC algorithm
has three main advantages over the conventional MUSIC technique
implemented by using only the measured elements beampattern.
First, by transforming the measured beampattern from the angular
to the modal domain (EADF), we benefit from the SNR gain de-
scribed in Section 2.1. Second, by using the compressed informa-
tion contained in the EADF, we effectively reduce the data required
for modelling the antenna array [8],[9]. In fact, only a relatively
small number of modes M of the EADF are sufficient for accurately
describing the array. Last, but not least, by combining manifold
separation and EADF we can perform search-free DoA estimation
by processing the data directly in the element-space domain using
well known rooting-based techniques, e.g. root-MUSIC. The nec-
essary steps to perform DoA estimation using arbitrary arrays and
root-MUSIC are summarized in Table 1.

Table 1: Element-Space root-MUSIC

• Offline processing steps:
1. Acquire calibration measurements of the array at the high-

est possible SNR with a high angular resolution, i.e.
choose a large Q.

2. Compute the EADFs from the calibration measurements
using the IDFT.

3. Truncate the EADFs and form G in equation (6).
• Perform angular estimation (online processing):

1. Form the element-space array data matrix X.
2. Compute the noise subspace (element-space) Eη as in

eq. (7).
3. Use the standard root-MUSIC implementation on eq. (8)

to estimate the DOAs.

4.1 CRB for Real-World Arrays

In this section, we derive an approximate CRB used for comparing
and evaluating the statistical performance of the ES-root-MUSIC
algorithm when applied to different practical antenna array config-
urations.

It is important to note that the following derivation gives the ex-
act CRB for the array model, in eq. (5), used in the implementation
of the ES-root-MUSIC algorithm, but only an approximation of the
exact CRB for a given antenna array. This is due to the modelling
error in eq. (1), which can be made small only up to a threshold that
depends on the measurement noise σ2

w in the calibration data, see
Section 2.1. However, if the calibration measurements are properly
done, the modelling error can be neglected and the approximated
CRB still describes the performance bounds (at the highest possible
SNR) of a given real-world array with sufficient accuracy.

The signals in S used in our simulations are stochastic signals.
Consequently, we use the stochastic CRB as a performance measure
for the proposed algorithm. The stochastic CRB is defined as the in-
verse of the Fisher Information Matrix (FIM). This matrix gives the
relative rate (derivative) at which the probability density function
of the estimator changes with respect to data (curvature of the log-
likelihood function) [9],[11]. By combining the derivation property
of the manifold separation, eq. (3), and using the result in [11], we
find the CRB (as a function of the incident angles φ) as

CRB(φ) =
σ2

η

2K

{
<

[
(∆H

Πη∆)� (RsB
H

R
−1
x BRs)T

]}−1
,

(9)

where ∆ = [δ1, . . . ,δP ] with

δp =
∂b(φ)

∂φ

∣∣∣
φ=φp

= G
∂d(φ)

∂φ

∣∣∣
φ=φp

. (10)

Here, δp ∈ C
N×1 contains the derivative of the array steering vec-

tor with respect to the angle φ, evaluated at a certain DoA, B is
the N ×P array steering matrix, Rs is the P ×P signal covari-
ance matrix, Rx is the N ×N array covariance matrix, K is the
number of snapshots, σ2

η is the AWGN power and � denotes the
Hadamard-Schur product, i.e., element-wise multiplication. More-
over, Πη = I−Πs and Πs = B(BHB)−1BH are the N ×N
projection matrices to noise subspace and to signal subspace, re-
spectively.

It is well known that, in the low SNR region, this CRB is not the
proper bound for DoA estimation algorithms. For example, in the
very low SNR region of Fig. 6, the CRB is not valid. This is due to
the fact that the information about the limited support of the angle to
estimate is not used in the derivation of the CRB, i.e φ ∈ (−π

2 , π
2 )

for a ULA. On the other hand, this region is not of practical interest.

5. SIMULATION RESULTS

Here, we present simulation results showing the statistical perfor-
mance of the ES-root-MUSIC algorithm when used on non-ideal
real-world arrays with different configurations. For the performance
evaluation of the algorithm, we focus on the middle/high SNR re-
gion, i.e. when the CRB becomes the proper lower bound.

For the simulations, the following settings have been used: two
uncorrelated sources impinging the arrays from the azimuth angles
(φ1,φ2) = (25◦,35◦), K = 256 recorded snapshots and 2000 inde-
pendent Monte Carlo trials.

Note that since the characteristic matrix (EADF) G of each
array has been computed by using real-world calibration data, we
have normalized the recorded data X by a factor ‖G‖F /

√
NM.

This factor scales the recorded data in order to normalize the power
received either by a single sensor than by the entire antenna array.
In other words, the power received by a sensor is normalized by
its average received power, as well as the total power received by
the array (considering all the sensors) is normalized by the average
power among all the sensors. Note that the normalization factor
fixes the average array gain of the antenna arrays over the interval
[−π,π) to N , i.e. the number of sensors.

As a result, by using the aforementioned normalization factor,
we can now compare the performance limits (CRB) of the five dif-
ferent real-world array configurations.

In Fig. 8, we give the performance of the N = 24 elements
PUCPA, while Fig. 9 shows the performance of the N = 96 ele-
ments SPUCPA. The aperture of the arrays in azimuth is equivalent.
Consequently, the CRB should differ by the array gain only, which
is 10 log10 (96/24) ' 6 dB.

Throughout Fig. 6-10 we can clearly see that the ES-root-
MUSIC algorithm [1] has close to optimal performance for all five
real-world array configurations. The algorithm also appears to be
robust with respect to antenna non-idealities. The statistical perfor-
mance of ES-root-MUSIC is close to the respective CRB and has a
consistent behavior in all the analyzed scenarios.

6. CONCLUSIONS

In this paper, we studied the statistical performance of the Element-
Space (ES) root-MUSIC algorithm. The selection of the number of
modes, when real-world antenna arrays are used, is also discussed.

The calibration measurements, used to compute the array
model, contain array non-idealities such as mutual coupling be-
tween sensors, antenna manufacturing errors and, sensors orienta-
tion and position.

An approximate stochastic CRB for practical arrays has been
derived. Simulation results show that ES-root-MUSIC algorithm
can perform 1-D (azimuth only) DoA estimation at a fixed elevation
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Figure 7: Statistical performance of ES-root-MUSIC when used on
the UCA with N = 16 sensors and M = 25 selected modes.
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Figure 8: Statistical performance of ES-root-MUSIC when used on
the PUCPA with N = 24 sensors and M = 45 selected modes.

angle on arbitrary array configurations. The algorithm performance
is close to the CRB regardless of the array imperfections.
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