Whinchat survival estimates across Europe: can excessive adult mortality explain population declines?

Rémi Fay ${ }^{1 *}$, Michael Schaub ${ }^{1}$, Mykhailo V. Banik ${ }^{2}$, Jennifer A. Border ${ }^{3}$, Ian G. Henderson ${ }^{3}$, Georg Fahl ${ }^{4}$, Jürgen Feulner ${ }^{5}$, Petra Horch ${ }^{1}$, Fränzi Korner ${ }^{1}$, Mathis Müller ${ }^{1}$, Vanja Michel ${ }^{1}$, Helmut Rebstock ${ }^{6}$, Dmitry Shitikov ${ }^{7}$, Davorin Tome ${ }^{8}$, Matthias Vögeli ${ }^{1}$, Martin U. Grüebler ${ }^{1}$
${ }^{1}$ Swiss Ornithological Institute, Seerose 1, CH-6204 Sempach
${ }^{2}$ V.N.Karazin Kharkiv National University, Kharkiv, Ukraine
${ }^{3}$ British Trust for Ornithology, Thetford, UK.
${ }^{4}$ Meudt, Germany
${ }^{5}$ Grafengehaig, Germany
${ }^{6}$ Balingen, Germany
${ }^{7}$ Zoology and Ecology Department, Moscow Pedagogical State University, Moscow, Russia
${ }^{8}$ National Institute of Biology, Vecna 111, 1000 Ljubljana, Slovenia
*corresponding author: fay.remi@gmail.com

Abstract

European farmland birds show massive large-scale population declines due to agricultural intensification. Long-distance migrants are particularly affected as their populations appear to undergo larger declines than those of residents and short-distance migrants, raising the question about the impact of non-breeding environmental conditions and their potential impact on annual survival. The whinchat Saxicola rubetra, an Afro-Palearctic migrant inhabiting open habitats, has strongly declined over the last decades. Most of the conservation effort for this species has focused on improving the breeding success in Europe, but it is unclear whether habitat changes in non-breeding areas may also have contributed to the population declines through a decrease in adult survival. We studied survival of whinchats from eight breeding populations across Europe by analyzing capture-recapture data. We found that apparent survival was consistently higher in males than in females and higher in successful than in failed breeders independently of the sex. True adult survival may however hardly differ between sexes being about 0.5-0.6 and a simple population model suggests true juvenile survival to be between 0.2-0.35. Adult survival was unrelated to population trends suggesting that the main demographic problem of the whinchats is likely insufficient reproduction, a feature that is shared with other declining grassland specialists. Finally, in line with results on other migratory farmland species, our study suggests that conservation activities for whinchats should in first place focus on Europe.

Keywords: Adult survival; Afro-Palearctic migrant; capture-recapture; juvenile survival; mortality; Saxicola rubetra; sex-specific survival

Introduction

Populations of farmland birds have strongly declined in Western Europe over the last decades (Newton, 2004; Sanderson et al., 2006) due to the intensification of agricultural practices (Donald et al., 2001). Formerly common and widespread species are now extirpated from large areas and some of them got listed on the Red List of Threatened Species (IUCN 2019). Knowledge about demographic rates of farmland birds is fundamental to diagnose the underlying demographic mechanisms of the decline and to suggest effective management measures. At large spatial scales, dispersal (i.e. emigration and immigration at the local population level) can be ignored because it acts as a redistribution process and thus does not contribute to changes in the overall number of individuals over time (Newton, 2004). The potential demographic mechanisms driving the large-scale decline of European farmland birds may consequently be characterized by two fundamental processes: survival and reproduction.

Among farmland birds, long-distance migrants received recently particular attention (Blackburn and Cresswell, 2016a; Johnston et al., 2016), as their populations have declined more severely compared to those of resident species or short-distance migrants (Both et al., 2010; Vickery et al., 2014). These species-specific differences related to migratory strategies suggested environmental conditions away from breeding sites as a potential reason for differential population trends. Past studies have occasionally related population declines in European breeding species to a decrease in survival owing to deterioration of non-breeding conditions in Africa. For example, breeding population collapses of Afro-Palearctic migrants such as common whitethroats Sylvia communis (Winstanley, 1974), sand martins Riparia riparia (Bryant and Jones, 1995) or white storks Ciconia ciconia (Kanyamibwa et al., 1990) in the 1970s and 1980s, have been related to severe droughts in the Sahel revealing a strong decrease in survival.

However, it is unclear whether the current large-scale population declines of long-distance migratory farmland birds can also be explained by similar deterioration in the non-breeding areas in Africa (Sanderson et al., 2006; Vickery et al., 2014). Thus, improved knowledge of survival in these species is critical to obtain a better understanding of the demographic processes that resulted in population declines.

An understanding of demographic processes across large spatial scales requires several years of intense data collection involving different monitoring programs run in parallel. Such monitoring programs are highly time-consuming and costly. Difficulties are particularly acute for the investigation of survival which furthermore poses methodological challenges. To estimate representative survival of a given bird population, a large number of individuals (i.e. typically in the order of hundreds of individuals) have to be captured, marked individually and tracked over years. Additionally, permanent emigration from the study area is confounded with mortality and thus estimates of survival often reflect apparent rather than true survival (Lebreton et al., 1992). Finally, sex, age and breeding success can affect both dispersal and survival in different ways resulting in a challenging estimation of age and sex-specific survival. These difficulties may explain why our understanding of survival as a demographic driver of population dynamics is still limited, especially in passerine birds (Anders and Marshall, 2005). Finally, our understanding of survival processes over large spatial scales is typically impeded by the very small number of populations studied.

The whinchat Saxicola rubetra is an Afro-Palearctic migrant that inhabits a range of open habitats in both the breeding and non-breeding areas. As most farmland birds, whinchats have undergone a massive decline over the last decades. At the European scale, they suffered a population decline of 88% between 1980 and 2017 and are currently still decreasing (EBCC
2019). Although most of the conservation effort is allocated to improve the breeding success, it remains unclear whether habitat changes in non-breeding areas may also add to the negative population trend (Bastian 2015). While the breeding ecology has been intensively studied (Britschgi et al., 2006; Calladine and Bray, 2012, appendix S3), our knowledge about survival is limited. Here, we analysed capture-recapture and population count data of whinchats originating from eight breeding populations across Europe. We estimated apparent survival and performed a multi-population comparison for testing the consistency of effects of age, sex and breeding success (successful vs. failed) on survival estimates. Based on these results and with the use of a simple population model we estimated true adult and juvenile survival. Finally, we investigated the potential relationship between adult survival and the large-scale population decline of whinchats in Europe. Using two complementary approaches focusing on two different aspects of the survival (i.e. mean and year-to-year variation), we assessed the relationships between the adult apparent survival and the growth rates of these eight breeding populations.

Material and Methods

Study species and populations

The whinchat is a small $(15 \mathrm{~g})$, insectivorous Afro-Palearctic migrant that inhabits a range of open habitats including agricultural landscapes in breeding and non-breeding areas (Cramp 1988). Whinchats show high annual mortality and the maximal lifespan ever recorded is seven years (Fransson et al. 2017). They are monogamous, nest on the ground and usually raise one brood per year (Cramp 1988). Individuals are sexually mature at the age of one year. Females incubate the
clutch (containing typically 5-6 eggs) and brood the hatchlings, but both parents contribute to feed the nestlings (Cramp 1988).

Our study is based on capture-recapture and population count data of whinchats sampled in eight populations from five European countries (United Kingdom (1, UK), Slovenia (1, SL), Russia (1, RU), Ukraine (1, UKR), Germany (3, Ba, We, Ob), Switzerland (1, SW)). Most populations were located either in cultivated grassland managed with low intensity (1-2 cuts per year) or in uncultivated grassland. The study site from Switzerland, however, was cultivated at a higher level of intensity (2-3 cuts per year, Müller et al., 2005). A previous study has shown that the breeding success and female survival during incubation are both negatively affected by this intense grassland management (Grüebler et al., 2008).

Data collection

The study durations varied between 5 to 17 years (Table S1). In each population, both adults and nestlings were ringed with aluminium rings and colour plastic rings. The sex was systematically recorded for adults (i.e. at least one year old) based on plumage dimorphism (Jenni and Winkler, 1994), while marked nestlings remained unsexed unless if reencountered as adults. Re-encounters were either recaptures or resightings during the breeding season. Whinchat nests were searched and the presence of fledglings was recorded in all but the Swiss population. A marked individual was considered successful if it had produced at least one fledgling. However, the breeding success of 10 to 25% of the individuals (depending on the population) could not be assessed. These individuals were classified as breeders with unknown breeding output. In addition to the collection of capture-recapture data, the number of breeding pairs was counted each year. As the area from where the population counts originated changed over time in some populations, we reported densities rather than absolute counts.

Data analysis

Age and sex-specific apparent survival estimates

The capture-recapture data from the different populations were modelled jointly with three different Cormack-Jolly-Seber (CJS) models. Estimates from these models were then used for further analyses. Parameters directly estimated by the CJS models were φ, the annual apparent survival probability, and p, the recapture probability (Lebreton et al., 1992). Apparent survival probability was dependent on year, population, age (juvenile: survival from ringing as nestling until one year old; adult: survival from the age of one year onwards) and sex for adults. As the sex of juveniles was unknown at the ringing age, we did not include a sex-specific survival probability for this age-class. These parameters were modelled with different linear models, which then build our three CJS models.

CJS ${ }_{1}$ aimed to obtain average (with respect to year) age- and sex-specific apparent survival estimates for each population and therefore used the following linear model:

$$
\operatorname{logit}\left(\phi_{i, t}^{j u v}\right)=\mu_{i}^{\phi^{j u v}} \quad \text { and } \quad \operatorname{logit}\left(\phi_{i, s, t}^{a d}\right)=\mu_{i, s}^{\phi^{a d}} \quad \text { where } i, s \text { and } t \text { are indices for }
$$ population, sex and year, respectively. μ_{i}^{X} is the population specific mean of parameter X and is treated as a fixed effect.

CJS_{2} aimed to obtain typical age- and sex-specific apparent survival probabilities of whinchats and the variability of survival among populations. We therefore modelled age- and sex-specific apparent survival with a population random effect:

$$
\left.\begin{array}{lll}
\operatorname{logit}\left(\phi_{i, t}^{j u v}\right) & =\mu^{\phi^{j u v}}+\varepsilon_{i}^{\phi^{j u v}} & \text { with }
\end{array} \varepsilon_{i}^{\phi^{j u v}} \sim \operatorname{Normal}\left(0, \sigma_{\varepsilon^{\phi^{j u v}}}^{2}\right)\right)
$$

where $\mu^{\phi^{j u v}}$ and $\mu_{s}^{\phi^{a d}}$ are the mean juvenile and sex-specific adult survival which are fixed effects, and $\varepsilon_{i}^{\phi^{j u v}}$ and $\varepsilon_{i, s}^{\phi^{a d}}$ are the age- and sex-specific population random effects with corresponding variances of $\sigma_{\varepsilon^{\phi^{j u v}}}^{2}$ and $\sigma_{\varepsilon^{\Phi^{a d}},}^{2}$. For comparing among-population variances between sex and age classes, we provide absolute and relative variances. The absolute variances are the variances among the populations-specific estimates on the $[0,1]$. The relative variances are absolute variance scaled by the maximally possible variance value which is given by $\mu^{*}(1-\mu)$ where μ is the corresponding mean survival (Gaillard and Yoccoz, 2003).

With CJS_{3} we estimated year-specific adult apparent survival with annual random effects,

$$
\operatorname{logit}\left(\operatorname{\phi ad}_{i, s, t}\right)=\mu_{i}^{\text {фad }}+\varepsilon_{i, t}^{\phi \mathrm{ad}} \quad \text { with } \quad \varepsilon_{i, t}^{\phi \mathrm{ad}} \sim N\left(0, \sigma_{\varepsilon^{\phi}}^{2}\right)
$$

and juvenile survival was modeled as in CJS_{1}.

In all three CJS models we used the same structure for the recapture probabilities. We considered sex-specific recapture probabilities because males are typically more conspicuous than females during the breeding season. Due to the small sample size of some datasets we modelled the sex effect on recapture probability with a population random effect to obtain more reliable estimates. We also used an additive random year effect nested within the population effect:

$$
\operatorname{logit}\left(\mathrm{p}_{i, s, t}\right)=\mu_{i}^{\mathrm{p}}+v_{i}^{\mathrm{p}}+\varepsilon_{i, t}^{\mathrm{p}} \quad \text { with } \quad v_{i}^{\mathrm{p}} \sim \operatorname{Normal}\left(\bar{v}, \sigma_{v}^{2}\right) \quad \text { and } \quad \varepsilon_{i, t}^{\mathrm{p}} \sim \operatorname{Normal}\left(0, \sigma_{\varepsilon, i}^{2}\right)
$$

v_{i}^{p} is the population-specific sex effect on the recapture probability, which is assumed to be normally distributed with mean \bar{v}, i.e. the average difference between female and male recapture probability, and variance $\sigma_{v}^{2} \cdot \mu_{i}^{\mathrm{p}}$ is the population-specific mean recapture probability of males.

Effect of breeding success on apparent survival

To investigate the effect of the breeding success on apparent survival we formulated a multievent capture-recapture model (Pradel, 2005). Multi-event models allow estimating state specific survival accounting for state uncertainty, which originated by the observation of marked individuals whose reproductive success was unknown. We provide more details about the specification of this model in appendix S 1 .

Assessing the importance of emigration

To investigate the importance of emigration in our estimates of apparent survival we performed two complementary analyses based on the results of CJS ${ }_{1}$. First, we investigated the relationship between the average survival of both juveniles and adults with the size of the monitored study areas using the following linear regression:

$$
\operatorname{logit}\left(\phi_{i}\right)=\beta_{0}+\beta_{1} * \text { study. } \operatorname{area}_{i}+\varepsilon_{i}^{\phi}
$$

where ϕ_{i} is the average survival of population i, β_{0} is the intercept, β_{1} is the slope describing the relationship between average survival and the size of the study area, and ε_{i}^{ϕ} is the residual term that we assumed to be normally distributed with mean 0 and variance σ_{ε}^{2}. As emigration is expected to decrease with increasing size of the study area, apparent survival should be positively related to the study area.

Second, we assessed the relationship between juvenile and adult apparent survival at the population level. Emigration is likely to differ among populations due to differences among the study sites (e.g. size, shape, connectivity with other populations). However, all other things being equal, juvenile and adult emigration rate should vary consistently with features of the study areas.

For instance, if juvenile emigration is high in a study population due to its small size or isolation, adult emigration should also be relatively high. To assess the relationship between juvenile and adult apparent survival, we used a linear regression based on the estimated survival probabilities of CJS_{1}. The average juvenile survival rate was predicted by the average adult survival rate:

$$
\operatorname{logit}\left(\phi_{i}^{j u v}\right)=\beta_{0}+\beta_{1} * \phi_{i}^{a d}+\varepsilon_{i}^{\phi^{j u v}}
$$

where $\phi_{i}^{j u v}$ is the average juvenile survival in population i, β_{0} is the intercept, β_{1} is the slope describing the relationship between average juvenile survival and average adult survival ($\phi_{i}^{\text {ad }}$), and $\varepsilon_{i}^{\phi^{j u v}}$ is the residual term that we assumed to be normally distributed with mean 0 and variance σ_{ε}^{2}. The females of the Swiss population have been excluded for both analyses because their apparent survival is negatively impacted by hay cutting (Grüebler et al., 2008). Thus we have a priori knowledge that female apparent survival probability may not reflect emigration in the same way as for other populations.

Estimation of true juvenile survival

Juvenile survival is a key demographic rate, yet poorly known (Anders and Marshall, 2005; Cox et al., 2014; Naef-Daenzer and Grüebler, 2016). Juvenile apparent survival estimates are likely to be strongly affected by permanent emigration (Weatherhead and Forbes, 1994), and true juvenile survival cannot be estimated from capture-recapture data alone. In order to get a possible estimate of true juvenile survival, we used a simple population model (Anders and Marshall, 2005). Based on average values of true adult survival ($\mathrm{s} a \mathrm{ad}$) and fecundity (fec), we calculated the needed level of juvenile survival ($\mathrm{s}_{\mathrm{juv}}$) to ensure the long term persistence of a population. Thus we estimated the long-term average juvenile survival of a viable population which may not apply to our studied populations. The underlying population model assumed no age effect on reproduction, full
recruitment at the age of 1 year and an even sex ratio at birth. The population growth rate is then lambda $=1=S_{j u v}{ }^{*} \mathrm{fec} / 2+S_{a d}$, and thus juvenile survival becomes:

$$
S_{j u v}=\left(1-S_{a d}\right) /(f e c * 0.5)
$$

The likely range of adult survival was based on the results of this study (see discussion). We conducted a literature review to find estimates of fecundity. Fecundity was decomposed into two processes, the breeding success $(\gamma$, the probability that an initiated brood produces at least one fledging) and the productivity given success (δ, the mean number of fledglings per successful brood). Whinchats usually produce one brood per year, but replacement broods may occur in case of failure. Thus, we also included a renesting probability (α). Including these parameters, the previous equation to estimate the true juvenile survival becomes:

$$
S_{j u v}=\left(1-S_{a d}\right) /((\gamma+\alpha *(1-\gamma)) * \delta * 0.5)
$$

Population growth rate and its relationship with adult apparent survival

We used a state-space model to estimate the population growth rates from the population count data (de Valpine and Hastings, 2002). State-space models decompose an observed time series of counts into a state process describing the dynamics of the population and an observation process describing the relationship between the true population size and the counts. We modelled the state process with an exponential growth model, $\hat{y}_{i, t+1}=\hat{y}_{i, t} * \lambda_{i, t}$ with $\log \left(\lambda_{i, t}\right) \sim N\left(\bar{\lambda}_{i}, \sigma^{2}{ }_{\lambda}\right)$, where $\hat{y}_{i, t}$ is the estimated density of population i in year $t, \bar{\lambda}$ is the average population growth rate of population i, and $\sigma^{2}{ }_{\lambda}$ is the residual variance of the population growth rates on the logscale. We considered a normally distributed error for the observation process that links the observed population density with the true population density, i.e. $y_{i, t} \sim N\left(\hat{y}_{i, t}, \sigma^{2}{ }_{\text {obs }}\right)$, where
$\sigma^{2}{ }_{\text {obs }}$ is the variance of the observation error. Population counts were expressed as density and were further standardized within each population by the observed density in the first year. This allowed to jointly estimate the population growth rates using the shared parameters $\sigma^{2}{ }_{\lambda}$ and $\sigma^{2}{ }_{\text {obs }}$. This choice was motivated by the short duration of some time series.

We assessed the relationship between annual population growth rates and the estimated annual adult apparent survival probabilities using two complementary approaches. First, we assessed the relationship between the average growth rate and the apparent survival from CJS_{1} in a joint linear model:

$$
\log \left(\bar{\lambda}_{i}\right)=\beta_{0}+\beta_{1} * \phi_{i}+\varepsilon_{i}^{\lambda}
$$

where $\bar{\lambda}_{i}$ is the average growth rate of population i, β_{0} is the intercept, β_{1} is the slope describing the relationship between average population growth rate and average adult apparent survival (ϕ) and $\varepsilon_{i}^{\lambda}$ is the residual term that we assumed to be normally distributed with mean 0 and variance σ_{ε}^{2}. If population declines are driven by a decrease in adult survival, we should observe a positive relationship between adult apparent survival and population growth rate.

However, because permanent emigration may affect the estimate of adult apparent survival differently in each population, the power of the first analysis might be limited. Therefore, we also investigated the relationship between population growth rate and adult apparent survival on an annual basis. We assessed the relationship of the residual term of survival $\varepsilon_{i, t}^{\phi}$ as obtained from CJS_{3} with the annual population growth rate using a joint linear model:

$$
\lambda_{i, t}=\beta_{0, i}+\beta_{1} * \varepsilon_{i, t}^{\phi}+\varepsilon_{i, t}^{\lambda}
$$

If the year-to-year variations of adult apparent survival rate drive the annual variations of the population growth rate, we should find a positive relationship $\left(\beta_{1}>0\right)$.

Model implementation

We used the Bayesian approach and Markov chain Monte Carlo (MCMC) simulation for parameter estimation. The analyses were conducted in JAGS (Plummer, 2003) via the R package jagsUI (Kellner, 2016) using code from Kéry and Schaub (2012) that was adapted where necessary. Details about model implementation are provided in appendix S2. We report posterior means and 95% credible intervals. Inference for specific tests was based on the probability that an estimate was positive.

Results

Annual survival

Estimates from CJS $_{1}$ suggested consistent age and sex effects on apparent survival in all eight populations (Fig. 1). Juvenile apparent survival was around 0.10 but varied from 0.03 to 0.26 among populations. Adult males had higher apparent survival than adult females with averages of 0.50 and 0.36 , respectively. The sex effect varied among populations and the difference between the sexes decreased with female apparent survival $\left(\beta_{1}=-3.27[-5.87,-0.65], p\left(\beta_{1}<0\right)=0.99\right.$, Fig. 2).

Figure 1: Age- and sex-specific apparent annual survival probabilities of whinchats from eight European populations estimated with CJS_{1} (see text for the abbreviations of the populations). The dots are the population specific posterior means. The vertical lines show the 95% credible intervals. The solid and dashed horizontal lines show the average apparent survival for each age and sex class with the corresponding 95% credible intervals.

Stage	Mean	Absolute variance	Relative variance
Juveniles	$0.09[0.04,0.20]$	$0.0051[0.0027,0.0103]$	$0.0623[0.0290,0.1942]$
Adult females	$0.36[0.26,0.46]$	$0.0032[0.0001,0.0214]$	$0.0137[0.0004,0.0960]$
Adult males	$0.49[0.43,0.55]$	$0.0002[0.0000,0.0065]$	$0.0010[0.0000,0.0262]$

Figure 2: Relationship between female apparent adult survival and the difference in apparent survival between sexes (male - female apparent survival) in eight European whinchat populations. The dots show the relationship ($\pm 95 \%$ credible interval) obtained from CJS ${ }_{1}$, the bold line shows the relationship as a linear function of adult female survival and the shaded area shows the 95% credible interval of the slope.

Table 1: Mean annual age- and sex-specific apparent survival probabilities and their spatial absolute and relative variances across eight European whinchat populations based on CJS_{2}. See methods section for the definition of absolute and relative variances. Given are posterior means with the 95% credible intervals in square brackets.

Females

The review on productivity of whinchats revealed that breeding success was highly variable among populations ranging roughly from 30 to 70%. The number of fledglings per successful brood was less variable being 5.2 on average and the renesting probability after failure has rarely been estimated accurately. To parameterize the population model for estimating true juvenile survival we used different values $(0.3,0.4,0.5,0.6,0.7)$ for breeding success to account for its variability, 5.2 for the number of fledglings and two different values $(0.4$ and 0.8$)$ for the renesting probability that should reflect the assumed range. Detailed results and additional comments about the review are provided in appendix S3. Finally, based on our previous results, we assumed that the true adult female survival is likely to be in the range of 0.5 to 0.6 (see discussion). Using the simple population model we found that the true average juvenile survival of a viable population is unlikely to be lower than 0.2 . To ensure population persistence when the breeding success is between 0.4 and 0.7 the true average juvenile survival needed to be between 0.2 and 0.35 (Fig. 4). However, if the long-term breeding success is only around 0.3 , the average juvenile survival required for a stable population was 0.35-0.45.

Figure 4: Average juvenile survival that is needed in a stable population with balanced dispersal. Estimates are provided for different values of breeding success $(\gamma=0.3,0.4,0.5,0.6,0.7)$ and under the assumption that adult female survival is between 0.5 and 0.6 . The renesting probability $\delta(\alpha)$ after failure was fixed at 0.4 on the left panel and 0.8 on the right panel. The productivity per successful brood (δ) was assumed to be 5.2. The red lines show the ranges of the predicted juvenile survival according to the different scenarios.

We found a positive relationship between the size of the study area and juvenile apparent survival $\left(\beta_{1}=0.56[-0.35,1.49], \mathrm{p}\left(\beta_{1}>0\right)=0.92\right)$, but no clear evidence for similar relationships in adult female survival $\left(\beta_{1}=0.14[-0.39,0.76], \mathrm{p}\left(\beta_{1}>0\right)=0.73\right)$ and adult male survival $\left(\beta_{1}=\right.$ $\left.0.04[-0.25,0.37], \mathrm{p}\left(\beta_{1}>0\right)=0.59\right)$. At the population level, juvenile survival was positively correlated with both adult female survival $\left(\beta_{1}=6.69[-0.95,15.09], \mathrm{p}\left(\beta_{1}>0\right)=0.96\right)$ and adult male survival $\left(\beta_{1}=8.85[-6.01,22.24], \mathrm{p}\left(\beta_{1}>0\right)=0.93\right)$ as expected if breeding dispersal beyond the study area occurs (Fig. 5).

Figure 5: Relationship between juvenile and sex-specific adult apparent survival probabilities of whinchats from eight European populations. The open dots show the relationship using estimates of juvenile survival ($\pm 95 \% \mathrm{CRI}$) from CJS_{1}, the bold lines show the relationship with estimates of juvenile survival obtained from a linear function of adult survival and the shaded areas show the 95% CRI of these estimates.

We found no relationship between population growth rate and adult apparent survival. Although population trends varied among populations (Fig S1), there was no evidence of a positive relationship between population growth and the average adult apparent survival ($\beta_{1}=-$ $\left.0.18[-1.18,0.77], p\left(\beta_{1}>0\right)=0.33\right)$. Accounting for sex-specific survival did not change this result. The absence of the relationship between the population growth rate and the apparent survival can be illustrated by comparing populations from Slovenia (SL) and Germany (Balingen, Ba). Although the Slovenian population was decreasing, adults had a higher apparent survival than adults from the increasing Balingen population (Fig. S2). Consistently, there was also no
evidence of a positive relationship between population growth and adult apparent survival on an annual basis $\left(\beta_{1}=0.10[-1.4,1.5], \mathrm{p}\left(\beta_{1}>0\right)=0.50\right)$. Within populations, years with high population growth rate were not associated with years of high adult survival (Fig. 6).

Figure 6: Relationship between adult apparent survival averaged over sexes as obtained from CJS_{3} and population growth rate in eight European whinchat populations based on mean estimates (A) and temporal residuals (B).

Discussion

We studied survival of whinchats from eight populations across Europe. Annual apparent survival showed consistent effects of age, sex and breeding success, which allowed gauging likely values of both true juvenile and adult survival. We also investigated the relationship between adult survival and population dynamics. The lack of evidence for a positive relationship
between adult survival and population growth suggests that recruitment is the main driver of whinchat population dynamics and that conditions outside the breeding areas are unlikely to have contributed to the large-scale declines of European whinchat populations.

Sex-specific differences in adult survival

Adult apparent survival was consistently higher in males than in females in all eight study populations. The sex-specific difference in apparent survival might be caused by a difference in true survival in favor of males or by stronger dispersal in females resulting in permanent emigration from the study areas. Higher mortality in females seems frequent in birds (Donald, 2007). This phenomenon can be explained by their longer exposure to nest predators since females often have a more dominant role in incubation and brooding compared to males (Lack, 1954; Owens and Bennett, 1994). Incubation and chick brooding is performed only by females in whinchats, which may therefore suffer from a higher mortality. However, the available information about predation in our study populations does not support this interpretation. Indeed, although females from the UK population suffering from strong nest predation (Border et al., 2017), they have only slightly lower apparent survival probabilities than males.

The other possibility for the occurrence of sex-specific differences in adult apparent survival is sex-specific breeding dispersal. Generally in birds, males tend to be more faithful to their breeding site than females (Clarke et al., 1997; Greenwood, 1980) and consequently we expect lower apparent survival in females compared to males. Because breeding dispersal is known to be stronger in whinchat females than males (Bastian, 1992; Greenwood, 1980), the lower female apparent survival is at least partially the result of differential breeding dispersal. However, this is only valid for populations in which breeding dispersal results in permanent
emigration, namely in populations with small spatial extension with respect to dispersal distances. Adult apparent survival from the largest and most isolated population (UK) was high and very similar for both sexes. This suggests that true adult survival is similar in both sexes. Annual survival estimated from capture-recapture data collected in the non-breeding area, which is assumed to reflect true survival due to high site fidelity (Blackburn and Cresswell, 2016b), shows similar adult survival for both sexes of about 0.53 (Blackburn and Cresswell, 2016a). In our study we found that the sex effect was almost negligible when adult female apparent survival was above 0.5 . Thus, although adult apparent survival was typically higher in male than in female whinchats, true adult survival might actually hardly differ between sexes, at least when no intensive grassland management occurs that results in additional mortality in brooding females (Grüebler et al. 2008).

Effect of breeding success and true adult survival

We found that breeding success had a strong positive effect on apparent survival, which was similar for males and females. Apparent survival of successful individuals was on average 0.55 and 0.45 in males and females, respectively (Fig. 3). The effect of breeding success on apparent survival can be explained by the reduced breeding dispersal of successful breeders. Previous studies have demonstrated that successful individuals are more faithful to their breeding site and that, while males are generally more philopatric than females, males and females responded similarly to the variation of breeding success (Haas, 1998; Hoover, 2003). Under the assumption that successful breeders do not disperse, their apparent survival should be identical to true survival, hence around 0.55 in adult whinchat males (Fig. 3). Female survival was more variable rendering the conclusions more uncertain. Because whinchats have a male-territorial social system, a sex-specific difference in breeding dispersal might still be expected among
successful breeders. The assumption that successful breeders do not disperse may be weaker for females. Nevertheless, for three populations (UK, SL, Ba), survival of successful females was higher than 0.5 . These estimates are in line with female survival estimated on the non-breeding ground in Africa (0.53, Blackburn and Cresswell, 2016a). Thus, we suggest that true female survival is likely to be between 0.5-0.6 at least for UK, SL and Re populations. Estimates of apparent survival in small passerines are often in the range between 0.3 and 0.4 (e.g. Johnston et al., 2016), and may strongly underestimate true survival (Marshall et al., 2004). In migratory species which are often more faithful to their non-breeding than to their breeding site (Blackburn and Cresswell, 2016b), annual apparent survival estimated in the non-breeding area is often higher than in the breeding grounds, e.g. garden warbler Silvia borin 0.40 vs. 0.54 (Johnston et al., 2016; Peach et al., 2001) or Saxicola rubetra 0.44 vs. 0.53 (this study, Blackburn and Cresswell, 2016a). Consistently, survival of small passerines from populations where permanent emigration is negligible reach values of 0.6-0.7 (siberian tit Poecile cinctus Orell et al., 1999, willow tit Poecile montanus Lampila et al., 2006, house sparrow Passer domesticus Ringsby et al., 1999, song sparrow Melospiza melodia Dybala et al., 2013, ortolan bunting Emberiza hortulana Steifetten and Dale, 2006).

Juvenile survival

Juvenile apparent survival was low (0.1 on average) and highly variable among populations. Due to high natal dispersal rates, apparent survival is certainly lower than true juvenile survival and the variability among populations reflects primarily variation in permanent emigration (Clarke et al., 1997; Greenwood, 1980; Weatherhead and Forbes, 1994). Based on the assumption that true adult female survival is between $0.5-0.6$, our population model shows that average juvenile survival is unlikely to be lower than 0.2 and is probably between 0.2 and 0.35 .

This is consistent with previous conclusions about juvenile survival in this species (Müller et al., 2005) and with estimates of other passerines with similar methodology (0.2-0.3, Donovan et al., 1995; Lack, 1954). Our rough estimate is also in line with the few empirical estimates of true juvenile survival for other passerines where natal dispersal was negligible (0.24, house sparrow Ringsby et al., 1999; 0.30, song sparrow Dybala et al., 2013; 0.32, ortolan bunting Steifetten and Dale, 2006; 0.34, seaside sparrow Ammodramus maritimus Gilroy et al., 2012). Given that the average juvenile apparent survival is about 0.1 and true survival $0.2-0.35$, about 50% to 75% of all juveniles are expected to disperse from the study areas.

Survival during the first month after fledging (post-fledging survival) is low in passerines (Cox et al., 2014; Naef-Daenzer and Grüebler, 2016) and has been estimated to be 0.52 in whinchats (Tome and Denac, 2012). The combination of low post-fledging survival with the likely range of the annual juvenile survival (0.2-0.35), suggests that the survival of juvenile whinchats older than one month is close to adult survival $((0.25$ to 0.3$) / 0.52=0.48$ to 0.58$)$. Consistently, survival of juvenile whinchats is not distinguishable from adults after autumn migration (Blackburn and Cresswell, 2016a). This is in agreement with previous studies suggesting that the post-fledging period is the main bottleneck for juveniles, whereas during the rest of the year survival of juveniles is close to that of adults (Grüebler et al., 2014; Magrath, 1991).

Are whinchat populations driven by adult survival?

We did not find evidence of a positive relationship between adult survival and population growth rate. This suggests that adult survival was not the driver of population dynamics and that a degradation of conditions outside the breeding areas with potentially negative effects on
survival is an unlikely cause for the large-scale decline of European whinchat populations. The strongest support for this suggestion originates from the fact that the two populations with the highest male survival showed the strongest declines (SL and SW). Pioneering studies on the ecology of whinchats in their non-breeding area came to a similar conclusion. They suggested that the availability of suitable non-breeding habitat is unlikely to be a limiting factor and that survival is high during the presence of the individuals at the non-breeding sites (Blackburn and Cresswell, 2016a; Hulme and Cresswell, 2012). The population dynamics of whinchats is therefore likely driven by recruitment (productivity, juvenile survival, natal dispersal), which is in line with several studies in other species (Arcese et al., 1992; Grant and Grant, 1989; Schaub et al., 2013).

Land-use changes have strongly affected species occupying agricultural habitats (Donald et al., 2001; Newton, 2004; Sanderson et al., 2006; Stanton et al., 2018) and the whinchat is no exception to this general pattern. The increasing use of fertilizers in grassland and the resulting change in timing and frequency of mowing has caused serious damage to this species (Müller et al., 2005). Modern agricultural practices strongly reduced breeding success directly through nest destruction and indirectly through a decrease of food abundance (Britschgi et al., 2006; Tome and Denac, 2012). Both processes are likely to affect recruitment. Habitat degradation and fragmentation may also indirectly weaken remaining populations by a decrease of immigration and the disappearance of a potential rescue effect. There is further strong evidence that the main factor for the large-scale population decline of whinchats is the degradation of the breeding habitat. In Switzerland and France, where whinchat populations crashed like in Europe in general, mountain areas have acted as refuges. The species disappeared in the lowland where habitat modifications have been more pronounced and advanced compared to mountain areas
(Archaux, 2007; Müller et al., 2005). Whinchats persist today at higher elevations in a habitat that was previously found to be sub-optimal (Calladine and Bray, 2012; Müller et al., 2005). In Southern England and Wallonia, where whinchats have undergone a massive decline following the intensification of the agricultural practice, the two last significant populations persist in military training areas with large, extensively managed and largely protected grasslands (Salisbury Plain, Taylor, 2015; Elsenborn military camp, Jacob et al., 2010). Finally, while the large-scale population trend was strongly negative, some whinchat populations have been able to increase locally where the breeding habitat remained suitable (e.g. Lithuania in the 1990s, Kurlavičius 2015).

Yet, we acknowledge that other factors may still act synergistically (Vickery et al., 2014). For example, as a long-distance migrant, global warming may have a negative effect on whinchat reproduction affecting the phenological matching with prey abundance (Henderson et al., 2014). Populations of long-distance migrants decrease at a faster rate than residents or short-distance migrants likely because they are not able to adjust their migration timing to track the shift in spring resource pulse (Both et al., 2010). However, from a conservation perspective, current evidence suggests that breeding habitat deterioration in Europe is by far the most important factor for the large-scale decline of whinchats (Bastian 2015; Hulme and Cresswell, 2012). This conclusion is in line with results on other farmland bird species showing that their declines are independent on their migration strategies (Bowler et al., 2019; Reif and Vermouzek, 2019). These consistent results reinforce the urgent need to integrate conservation biodiversity more efficiently into agricultural policies of European countries.

Acknowledgements

We are grateful to all people that have contributed to the monitoring of these whinchat populations. We also sincerely thank Damijan Denac and Urša Koce for their contribution to the fieldwork in Slovenia, and Leonid P. Babkin, Olga A. Bresgunova and Olga V. Demirs'ka for their contribution to the fieldwork in Ukraine.

References

Anders, A.D., Marshall, M.R., 2005. Increasing the accuracy of productivity and survival estimates in assessing landbird population status. Conservation Biology 19, 66-74.

Arcese, P., Smith, J.N., Hochachka, W.M., Rogers, C.M., Ludwig, D., 1992. Stability, regulation, and the determination of abundance in an insular Song Sparrow population. Ecology 73, 805-822.

Archaux, F., 2007. Are mountains refuges for farmland bird species? A case study in the northern French Alps. Bird Study 54, 73-79.

Bastian, H.-V., 1992. Breeding and natal dispersal of Whinchats Saxicola rubetra. Ringing \& Migration 13, 13-19.

Bastian, H.-V., 2015. Why Whinchats are endangered? A try of a root cause analysis! In: Bastian H-V, Feulner J (Eds.): Living on the Edge of Extinction on in Europe. Proc. 1st European Whinchat Symposium: 17-26. LBV Hof, Helmbrechts.

Blackburn, E., Cresswell, W., 2016a. High within-winter and annual survival rates in a declining Afro-Palaearctic migratory bird suggest that wintering conditions do not limit populations. Ibis 158, 92-105.

Blackburn, E., Cresswell, W., 2016b. High winter site fidelity in a long-distance migrant: implications for wintering ecology and survival estimates. Journal of Ornithology 157, 93-108.

Border, J.A., Henderson, I.G., Ash, D., Hartley, I.R., 2017. Characterising demographic contributions to observed population change in a declining migrant bird. Journal of Avian Biology 48, 1139-1149.

Both, C., Van Turnhout, C.A., Bijlsma, R.G., Siepel, H., Van Strien, A.J., Foppen, R.P., 2010. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proceedings of the Royal Society B: Biological Sciences 277, 1259-1266.

Bowler, D.E., Heldbjerg, H., Fox, A.D., de Jong, M., Böhning-Gaese, K., 2019. Long-term declines of European insectivorous bird populations and potential causes. Conservation Biology 33, 1120-1130.

Britschgi, A., Spaar, R., Arlettaz, R., 2006. Impact of grassland farming intensification on the breeding ecology of an indicator insectivorous passerine, the Whinchat Saxicola rubetra: Lessons for overall Alpine meadowland management. Biological Conservation 130, 193205.

Bryant, D.M., Jones, G., 1995. Morphological changes in a population of Sand Martins Riparia riparia associated with fluctuations in population size. Bird Study 42, 57-65.

Calladine, J., Bray, J., 2012. The importance of altitude and aspect for breeding Whinchats Saxicola rubetra in the uplands: limitations of the uplands as a refuge for a declining, formerly widespread species? Bird Study 59, 43-51.

Clarke, A.L., Sæther, B.-E., Roskaft, E., 1997. Sex biases in avian dispersal: a reappraisal. Oikos 79, 429-438.

Cox, W.A., Thompson III, F.R., Cox, A.S., Faaborg, J., 2014. Post-fledging survival in passerine birds and the value of post-fledging studies to conservation. The Journal of Wildlife Management 78, 183-193.
de Valpine, P., Hastings, A., 2002. Fitting Population Models Incorporating Process Noise and Observation Error. Ecological Monographs 72, 57-76. https://doi.org/10.1890/00129615(2002)072[0057:FPMIPN]2.0.CO;2

Donald, P.F., 2007. Adult sex ratios in wild bird populations. Ibis 149, 671-692.
Donald, P.F., Green, R.E., Heath, M.F., 2001. Agricultural intensification and the collapse of Europe's farmland bird populations. Proceedings of the Royal Society of London. Series B: Biological Sciences 268, 25-29.

Donovan, T.M., Thompson III, F.R., Faaborg, J., Probst, J.R., 1995. Reproductive success of migratory birds in habitat sources and sinks. Conservation Biology 9, 1380-1395.

Dybala, K.E., Eadie, J.M., Gardali, T., Seavy, N.E., Herzog, M.P., 2013. Projecting demographic responses to climate change: adult and juvenile survival respond differently to direct and indirect effects of weather in a passerine population. Global Change Biology 19, 26882697.

EBCC 2019. PanEuropean Common Bird Monitoring Scheme. https://pecbms.info/trends-and-indicators/species-trends/

Gaillard, J.-M., Yoccoz, N.G., 2003. Temporal variation in survival of mammals: a case of environmental canalization? Ecology 84, 3294-3306.

Gilroy, J.J., Virzi, T., Boulton, R.L., Lockwood, J.L., 2012. A new approach to the "apparent survival" problem: estimating true survival rates from mark-recapture studies. Ecology 93, 1509-1516.

Grant, B.R., Grant, P.R., 1989. Evolutionary dynamics of a natural population: the large cactus finch of the Galápagos. University of Chicago Press.

Greenwood, P.J., 1980. Mating systems, philopatry and dispersal in birds and mammals. Animal Behaviour 28, 1140-1162. https://doi.org/10.1016/S0003-3472(80)80103-5

Grüebler, M.U., Korner-Nievergelt, F., Naef-Daenzer, B., 2014. Equal nonbreeding period survival in adults and juveniles of a long-distant migrant bird. Ecology and Evolution 4, 756-765.

Grüebler, M.U., Schuler, H., Müller, M., Spaar, R., Horch, P., Naef-Daenzer, B., 2008. Female biased mortality caused by anthropogenic nest loss contributes to population decline and adult sex ratio of a meadow bird. Biological Conservation 141, 3040-3049.

Haas, C.A., 1998. Effects of prior nesting success on site fidelity and breeding dispersal: an experimental approach. The Auk 115, 929-936.

Henderson, I., Calladine, J., Massimino, D., Taylor, J.A., Gillings, S., 2014. Evidence for contrasting causes of population change in two closely related, sympatric breeding species the Whinchat Saxicola rubetra and Stonechat Saxicola torquata in Britain. Bird Study 61, 553-565.

Hoover, J.P., 2003. Decision rules for site fidelity in a migratory bird, the prothonotary warbler. Ecology 84, 416-430.

Hulme, M.F., Cresswell, W., 2012. Density and behaviour of Whinchats Saxicola rubetra on African farmland suggest that winter habitat conditions do not limit European breeding populations. Ibis 154, 680-692.

Jacob, J.-P., Dehem, C., Burnel, A., Dambiermont, J.L., Fasol, M., Kinet, T., van der Elst, D., Paquet, J.Y., 2010. Atlas des oiseaux nicheurs de Wallonie 2001-2007, Série "Faune, Flore Habitats" n5. Aves \& Région Wallonne, Gembloux.

Jenni, L., Winkler, R., 1994. Moult and ageing of European passerines. Academic Press, London, UK.

Johnston, A., Robinson, R.A., Gargallo, G., Julliard, R., van der Jeugd, H., Baillie, S.R., 2016. Survival of Afro-Palaearctic passerine migrants in western Europe and the impacts of seasonal weather variables. Ibis 158, 465-480.

Kanyamibwa, S., Schierer, A., Pradel, R., Lebreton, J.D., 1990. Changes in adult annual survival rates in a western European population of the White Stork Ciconia ciconia. Ibis 132, 2735.

Kellner, K., 2016. jagsUI: A Wrapper Around "rjags" to Streamline "JAGS" Analyses. R package version 1.4.4. https://CRAN.R-project.org/package=jagsUI.

Kéry, M., Schaub, M., 2012. Bayesian population analysis using WinBUGS: a hierarchical perspective. Academic Press, Waltham, Massachusetts, USA.

Kurlavičius, P., 2015. Whinchat (Saxicola rubetra) in Lithuania: what we know about breeding biology, habitat selection and population trends. In: Bastian H-V, Feulner J (Eds.): Living on the Edge of Extinction in Europe. Proc. 1st European Whinchat Symposium: 107-115. LBV Hof, Helmbrechts.

Lack, D., 1954. The natural regulation of animal numbers. The Clarendon Press; Oxford. Lampila, S., Orell, M., Belda, E., Koivula, K., 2006. Importance of adult survival, local recruitment and immigration in a declining boreal forest passerine, the willow tit Parus montanus. Oecologia 148, 405-413.

Lebreton, J.-D., Burnham, K.P., Clobert, J., Anderson, D.R., 1992. Modeling Survival and Testing Biological Hypotheses Using Marked Animals: A Unified Approach with Case Studies. Ecological Monographs 62, 67-118. https://doi.org/10.2307/2937171

Magrath, R.D., 1991. Nestling weight and juvenile survival in the blackbird, Turdus merula. The Journal of Animal Ecology 335-351.

Marshall, M.R., Diefenbach, D.R., Wood, L.A., Cooper, R.J., 2004. Annual survival estimation of migratory songbirds confounded by incomplete breeding site-fidelity: study designs that may help. Animal Biodiversity and Conservation 27, 59-72.

Müller, M., Spaar, R., Schifferli, L., Jenni, L., 2005. Effects of changes in farming of subalpine meadows on a grassland bird, the whinchat (Saxicola rubetra). Journal of Ornithology 146, 14-23.

Naef-Daenzer, B., Grüebler, M.U., 2016. Post-fledging survival of altricial birds: ecological determinants and adaptation. Journal of Field Ornithology 87, 227-250.

Newton, I., 2004. The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions. Ibis 146, 579-600.

Orell, M., Lahti, K., Matero, J., 1999. High survival rate and site fidelity in the Siberian Tit Parus cinctus, a focal species of the taiga. Ibis 141, 460-468.

Owens, I.P., Bennett, P.M., 1994. Mortality costs of parental care and sexual dimorphism in birds. Proceedings of the Royal Society of London. Series B: Biological Sciences 257, 18.

Peach, W.J., Hanmer, D.B., Oatley, T.B., 2001. Do southern African songbirds live longer than their European counterparts? Oikos 93, 235-249.

Plummer, M., 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling, in: Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003). K. Hornik, F. Leisch \& A. Zeileis, Vienna, Austria, pp. 1-10. Pradel, R., 2005. Multievent: an extension of multistate capture-recapture models to uncertain states. Biometrics 61, 442-447.

Reif, J., Vermouzek, Z., 2019. Collapse of farmland bird populations in an Eastern European country following its EU accession. Conservation Letters 12, e12585.

Ringsby, T.H., Sæther, B.-E., Altwegg, R., Solberg, E.J., 1999. Temporal and spatial variation in survival rates of a house sparrow, Passer domesticus, metapopulation. Oikos 419-425.

Sanderson, F.J., Donald, P.F., Pain, D.J., Burfield, I.J., Van Bommel, F.P., 2006. Long-term population declines in Afro-Palearctic migrant birds. Biological Conservation 131, 93105.

Schaub, M., Jakober, H., Stauber, W., 2013. Strong contribution of immigration to local population regulation: evidence from a migratory passerine. Ecology 94, 1828-1838.

Stanton, R.L., Morrissey, C.A., Clark, R.G., 2018. Analysis of trends and agricultural drivers of farmland bird declines in North America: A review. Agriculture, Ecosystems \& Environment 254, 244-254.

Steifetten, Ø., Dale, S., 2006. Viability of an endangered population of ortolan buntings: the effect of a skewed operational sex ratio. Biological Conservation 132, 88-97.

Taylor, J.A., 2015. Determinants of variation in productivity, adult survival and recruitment in a declining migrant bird: the Whinchat. Lancaster University.

Tome, D., Denac, D., 2012. Survival and development of predator avoidance in the post-fledging period of the Whinchat (Saxicola rubetra): consequences for conservation measures. Journal of Ornithology 153, 131-138.

Vickery, J.A., Ewing, S.R., Smith, K.W., Pain, D.J., Bairlein, F., Škorpilová, J., Gregory, R.D., 2014. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1-22.

Weatherhead, P.J., Forbes, M.R., 1994. Natal philopatry in passerine birds: genetic or ecological influences? Behavioral Ecology 5, 426-433.

Winstanley, D., 1974. Where have all the Whitethroats gone? Bird Study 21, 1-14.

