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ABSTRACT
We present a new adaptive microphone array efficiently im-
plemented as a multi-channel FFT-filterbank. The array
design is based on a minimum variance distortionless re-
sponse (MVDR) optimization criterion. MVDR beamformer
weights are updated for each signal frame using an estimated
spatio-spectral correlation matrix of the environmental noise
field. We avoid matrix inversion by means of an iterative
algorithm for weight vector computation. The beamformer
performance is superior to designs based on an assumed ho-
mogeneous diffuse noise field. The new design also outper-
forms LMS-adaptive beamformers at the expense of a higher
computational load. Additional noise reduction is achieved
with the well-known beamformer/postfilter combination of
the optimum multi-channel filter. An Ephraim-Malah spec-
tral amplitude modification with minimum statistics noise
estimation is employed as a postfilter. Experimental results
are presented using sound recordings in a reverberant noisy
room.

1. INTRODUCTION

Suppression of noise and reverberation is needed for many
sound capturing applications. Multi-channel interference
suppression algorithms are superior to single-channel sys-
tems since they incorporate both spatial and temporal infor-
mation of the sound field. Microphone arrays with a beam-
former/postfilter combination for noise reduction are highly
efficient. Based on a multi-channel Wiener optimum fil-
ter, the beamformer/postfilter technique is widely used for
speech enhancement purposes (see e.g. [1, 2]). Normally, the
generalized side-lobe canceler (GSC) is used as an adaptive
beamforming device. It is more efficient than the classical
Frost beamformer [3] but in general tends to suppress the de-
sired speech signal.

A robust GSC beamformer with an adaptive blocking ma-
trix is presented in [4], and an efficient implementation is
reported in [5]. The main advantages are a flat top main
lobe, and reduced desired signal suppression resulting in
an improved array pattern as compared with the standard
GSC beamformer. However, two adaptive algorithms (one
for blocking matrix update, the other for noise cancellation)
must cooperate in order to achieve the desired behavior. A
long convergence time of the adaptive algorithms is needed,
especially in acoustic environments with strong reverbera-
tion and echoes. A further extension of the classical GSC
beamformer is presented in [6, 7]. A fixed blocking matrix is
used, but the actual steering vector is included in the design
by acoustic channel estimation. Nevertheless, convergence

speed is limited by the LMS-adaptive algorithms and by the
time constant of channel transfer function estimation.

GSC-based beamforming algorithms are capable to in-
corporate an estimated noise spatio-spectral correlationma-
trix into the update of the beamformer weight vector. Be-
cause this update is carried out on a frame-by-frame basis,
optimum weight vectors are approximated during a relative
large number of frames. In this paper, the actual spatio-
spectral correlation matrix is estimated too. However, beam-
former weight vectors are optimized for each signal frame.
Therefore, a significantly improved array pattern and noise
reduction, and faster tracking of time-variant noise fieldscan
be achieved.

We first derive an iterative minimum variance distortion-
less response (MVDR) beamforming algorithm. Afterwards
the optimum beamformer is used as a pre-processing device
to a single channel noise reduction system. This approach
is motivated by an efficient representation of a frequency-
domain multichannel filter. Experimental results are pre-
sented to justify the proposed technique.

2. MVDR BEAMFORMER WITH ITERATIVE
WEIGHT VECTOR COMPUTATION

We consider a sound capture situation as sketched in Fig. 1.
The channel impulse responseshi(~r, t) describe sound prop-
agation from the source to the individual microphones and
include not only the direct paths but also echoes and rever-
beration.

noise field

speech

h1(~r
, t)

hN (~r, t)

h2(~r, t)

s(~r, t)

x1(~r, t)
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Figure 1: Sound capture in a noisy acoustical environment
with N microphones (acoustic channels modeled by impulse
responseshi(~r, t)).

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



It is assumed thathi(~r, t) represents a time-invariant sys-
tem. In our practical implementation of the microphone ar-
ray, we estimate speaker location by time-delay estimation.
Thus,hi(~r, t) is approximated by a signal delay which may
vary according to speaker movements.

The discrete-time beamformer is realized with an FFT
overlap-add filterbank. Therefore, we derive the MVDR
beamformer algorithm based on the frequency domain multi-
channel system as shown in Fig. 2.
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Figure 2: Beamformer in frequency domain (* denotes con-
jugate complex,θ = 2π f

fs
is the frequency variable).

The microphone signal spectraXi(e
jθ ) are organized as

N ×1 vectorx(e jθ ) = [X1(e
jθ ),X2(e

jθ ), . . . ,XN(e jθ )]T . Us-
ing the signal model

Xi(e
jθ ) = Hi(e

jθ )S(e jθ )+Vi(e
jθ ), i = 1. . .N, (1)

the N × N spatio-spectral correlation matrix of the micro-
phone signals is given by

Sxx(e jθ ) = E{x(e jθ )xH(e jθ )}

= Ps(e
jθ )h(e jθ )hH(e jθ )+Svv(e jθ )

(2)

(provided that speech is not correlated with noise).Ps(e jθ )
is the speech power spectral density,h the channel trans-
fer function vector, andv the vector of the noise spectra
at the microphone inputs. SuperscriptH denotes conjugate-
transpose, andE{·} is the expectation operation. We assume
a time-stationary environment. In our practical implementa-
tion, however,Sxx is estimated on a frame-by-frame basis
allowing for slowly time-varying acoustical environments.

By arranging the beamformer weights as anN ×1 vector
w(e jθ ) = [W1(e

jθ ),W2(e
jθ ), . . . ,WN(e jθ )]T , the output spec-

trumY (e jθ ) can be written as

Y (e jθ ) = wH(e jθ )x(e jθ ). (3)

An MVDR beamformer minimizes the output signal
power under the constraint that signals from the desired di-
rection are maintained [8]:

wo = argmin
w

wHSxxw, with wHh = 1. (4)

(Frequency variableθ is omitted for clarity.) The constraint
minimization (4) can be solved using Lagrange’s method:

∇w[wHSxxw+λ (wHh−1)] = Svvw+λh = 0, (5)

where∇w is the gradient with respect to the weight vec-
tor. Note that (2) and the constraint implywHSxxw =
Ps +wHSvvw. Combining the constraint equation from (4)
with (5) leads to the well-known solution for the optimum
weight vector

wo =
S−1

vvh

hHS−1
vvh

. (6)

This solution must be computed at each frequency point of
the FFT filter bank. In a conventional MVDR beamformer
design, a homogeneous diffuse noise field is assumed. There-
fore,S−1

vv can be pre-computed for a given array geometry at
each frequency point, and thus no matrix inversion is needed
for such a noise field model. When incorporating the actual
noise field in the beamformer design,Svv must be estimated
resulting in a complexityO(N3) of the optimum weight vec-
tor computation at each frequency point. If we estimateSvv

for each signal frame with indexm by

Svv(e jθ ,m) = α Svv(e jθ ,m−1)

+(1−α)v(e jθ ,m)vH(e jθ ,m),
(7)

(α ≈ 0.8), thenS−1
vv could – in principle – be calculated using

the matrix inversion lemma with a computational complexity
of O(N2). However, the matrix inversion lemma is prone
to roundoff errors, especially if the matrix is ill-conditioned.
Unfortunately,Svv is ill-conditioned in the low frequency
range where the microphone signals are highly correlated.
As a consequence, diagonal loading (regularization) ofSvv

is mandatory in order to get a robust beamformer. Diagonal
loading, however, prevents an easy application of the matrix
inversion lemma.

As an alternative, we can compute the MVDR beam-
former weight vector by means of an iterative procedure.
Such an algorithm has been proposed in [9]. Since the deriva-
tion presented in [9] is rather involved due to the optimiza-
tion criteria used, we show that this iterative algorithm isan
improved version of the classical Frost beamformer [3]. The
optimum weight vector can be found iteratively with a steep-
est descent algorithm expressed by

wk+1 = wk −µ ∇w[wH
k Sxxwk +λ (wH

k h−1)]

= wk −µ (Svvwk +λh),
(8)

where we have used the cost function gradient from (5). Lan-
grange multiplierλ is obtained by substituting (8) in the con-
straint equationhHwk+1 = 1. By eliminatingλ from (8), we
finally get the update equation

wk+1 = wk −µ

(

I−
hhH

‖h‖2

)

Svvwk

︸ ︷︷ ︸

gk

, (9)

with N ×N identity matrixI. The LMS-type Frost adaptive
beamformer is related to (9) ifSvv is replaced by its instanta-
neous estimateSvv = vvH and the update is carried out on a
frame-by-frame basis (thusk is the frame index). In contrast,
in our weight vector update we useSvv estimated with (7)
and iterate in each frame (sok is not the frame index). Fur-
thermore, convergence speed is improved by computing an
optimum step size factorµ . According to [9], we choose the

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



step size that minimizes the noise power at the beamformer
output for each iteration:

∂ (wH
k+1Svvwk+1)

∂ µ∗
= 0, (10)

(* means conjugate complex). Combining (9) and (10) re-
sults in

µk =
gH

k Svvwk

gH
k Svvgk

. (11)

The complete iterative beamformer weight vector algorithm
is listed in Tab. 1. Although this algorithm requires a higher

1. updateSvv using (7)

2. apply diagonal loading̃Svv = Svv + εI
3. starting solution:w0 = h

‖h‖2

4. for eachk = 0,1,2, . . .

gk =
(

I− hhH

‖h‖2

)

S̃vvwk

µk =
gH

k S̃vvwk

gH
k S̃vvgk

wk+1 = wk −µkgk

5. terminate, ifgk ≈ 0

Table 1: Iterative weight vector computation for each frame
and each frequency point.

computational load than LMS-type adaptive beamformer al-
gorithms, it offers faster convergence and an improved beam
pattern since we optimize the beamformer weights for each
frame. As shown by our experimental results, only a few iter-
ations (3. . .6, typically) are needed to significantly improve
the beam pattern, and thus the noise reduction behavior of
the adaptive array. Compared to other adaptive beamformers
like the GSC beamformer, the improvements are especially
notable in the low frequency range.

3. BEAMFORMER/POSTFILTER COMBINATION

An MVDR beamformer as designed in the previous section
reduces noise from all but the desired direction. In order
to achieve an additional suppression of noise from the de-
sired direction, we must use a different optimization crite-
rion to calculate the optimum weight vector of Fig. 2. In fre-
quency domain, this criterion minimizes the mean-squared
error magnitude between the beamformer output spectrum
Y (e jθ ), and the desired speech spectrumS(e jθ ):

wo = argmin
w

E{|(S(e jθ )−wH(e jθ )x(e jθ ))|2}. (12)

Minimization of this error cost function leads to the Wiener
solution

wo(e
jθ ) = E

{
x(e jθ )xH(e jθ )

}−1

︸ ︷︷ ︸

S−1
xx(e jθ )

E
{
x(e jθ )S∗(e jθ )

}

︸ ︷︷ ︸

Sxs(e jθ )

. (13)

Using (2) andSxs = Psh, this solution can be written as

wo = S−1
xxSxs = (PshhH +Svv)−1Psh, (14)

where the frequency variableθ is omitted again for clarity.
Application of the matrix inversion lemma results in the fac-
torization

wo =
S−1

vvh

hHS−1
vvh

︸ ︷︷ ︸

wb f , beamformer

P′
s

P′
s +P′

v
︸ ︷︷ ︸

wp, postfilter

, (15)

with P′
s (P′

v) denoting the spectral power density of
speech (noise) at the beamformer output [1]. The beam-
former/postfilter combination of the optimum multi-channel
noise reduction system is shown in Fig. 3.

postfilter

estimate

X2(e jθ )

X1(e jθ )

W ∗
b f1(e

jθ )

W ∗
b f2(e

jθ )

W ∗
b fN

(e jθ )XN(e jθ )

wb f beamformer P′
s P′

v

wp

Y (e jθ )

Figure 3: Beamformer/postfilter in frequency domain.

The cascade connection of a beamformer, and a single-
channel noise reduction system is very attractive. If we are
able to design a good beamformer matched to the noise field
properties, then the postfilter operates at a much higher in-
put signal-to-noise ratio (SNR). Consequently, speech dis-
tortion and residual noise (musical tones) are definitely less
pronounced compared to the case with no beamformer pre-
processing. In addition, we can apply highly advanced noise
suppression algorithms for the post-filter.

In our adaptive beamformer, the iterative algorithm of
Tab. 1 is used because we want to match the beamformer
behavior to the actual noise field and to avoid a sub-optimal
solution by assuming a diffuse noise field. For the selection
of the postfilter there are several choices [1, 2]. The majority
of algorithms is based on the postfilter expression in (15)

wp(e
jθ ) =

P′
s(e

jθ )

P′
s(e

jθ )+P′
v(e

jθ )
=

P′
s(e

jθ )

Py(e
jθ )

(16)

and on estimation of the spectral power densityP′
s(e

jθ ) by

usingSxx(e jθ ), Svv(e jθ ), and (2). Since (2) exhibits(N−1)N
2

equations to calculateP′
s from Sxix j , averaging can be applied

to obtain a smooth least-squares estimate

P̂′
s = ℜe

{

∑N
i=1 ∑N

j=i+1

(
Ŝxix j − Ŝviv j

)

∑N
i=1 ∑N

j=i+1 HiH∗
j

}

(17)

(channel transfer functionHi, omitting θ ). Matrix elements
Ŝxix j , Ŝviv j may be estimated with a recursive algorithm like
(7). A speech pause detection is needed to update noise es-
timatesŜviv j . As shown in [2], speech pause detection can
be avoided, if a homogeneous diffuse noise field is assumed.
The estimation ofP′

s with (17) is straight forward. However,
due to fluctuations of the matrix elements, negative values of
P′

s may occur and must be eliminated by introducing a lower
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bound equal to zero or to some small spectral floor. Nonethe-
less, we may notice the typical musical noise and speech dis-
tortion of single-channel Wiener filters, if the input SNR is
below approximately 6 dB. Less speech distortion and mu-
sical noise can be achieved with more advanced postfilters,
like Ephraim-Malah spectral magnitude estimators [10], or
recently published efficient variations thereof [11, 12].

4. EXPERIMENTAL RESULTS

The adaptive microphone array is implemented with an
overlap-add multi-input 512 point FFT filterbank, and a sam-
pling frequencyfs = 16 kHz. Signal frames are obtained by
L = 512 point Hann windowing applied to the input signals.
A frame hop size equal toL/4 = 128 results in a four times
filterbank oversampling. For each FFT bin in the frequency
range 200 Hz. . . 6600 Hz, the optimum beamformer weight
vector is computed by means of Tab. 1. The upper cut-off
frequency is needed to avoid spatial aliasing of theN = 8
channel array with a geometry as shown in Fig. 4.

10 5 2.5 2.5 2.5 5 10

Figure 4: Microphone array geometry (dimensions in cm).

The channel impulse responses are approximated by de-
lays τi matched to the desired speaker direction. Thus,
the channel transfer functions are given byHi(e

jθ ) =
e− jθ fsτi , i = 1,2, . . . ,N. In our implementation, delays are
either computed for a given direction of arrival or are esti-
mated using the phase transform (PHAT) algorithm [13].

The postfilter is based on the Ephraim-Malah spectral
amplitude modifiers. An improved minimum statistics al-
gorithm [14] is employed for noise spectral density estima-
tion. In addition, part of this algorithm is also used for ro-
bust speech pause detection needed to estimateSvv for each
signal frame. The minimum statistics algorithm requires a
higher computational load as compared with basic speech
activity detectors. However, it offers a significantly better
performance at low input SNRs, and in case of nonstationary
acoustical noise.

For evaluation of the proposed beamformer/postfilter
combination, a test setup has been installed where the mi-
crophone array is placed in the middle of a large office room.
This acoustical environment exhibits a measured frequency-
averaged reverberation time of 0.84 seconds. Speaker direc-
tion is perpendicular to the array axis (broadside direction).
A single noise source with approximate 1/ f spectral power
density is emitting at an angle of 25° (measured from the
array axis). Due to the strong reverberation, there is also a
diffuse noise component giving rise to a mixture of unidirec-
tional and diffuse acoustical noise.

Besides listening tests, we use the enhancement of the
segmental SNR (SegSNRE) as a speech quality measure.
The SegSNRE in dB is the difference in segmental SNR be-
tween the output signal of the beamformer/postfilter com-
bination and the noisy microphone signals. A representa-
tive result is shown in Fig. 5. In the high noise region, the
beamformer withSvv estimation and iterative weight vector
computation is clearly superior to a design based on a dif-
fuse noise field. This is also true, if the proposed algorithm
is compared to other beamformer/postfilter algorithms based
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Figure 5: Enhancement of segmental SNR (SegSNRE) in dB
of the proposed beamformer/postfilter combination (mixture
of unidirectional and diffuse acoustical noise).

on the diffuse noise field assumption. In all experiments only
6 iteration are used for weight vector computation in each
signal frame. A comprehensive comparison including for-
mal listening tests of various known postfilter algorithms has
been carried out in a diploma thesis [15]. In this study, the
algorithm proposed in [2] performs best in case of diffuse
noise fields and moderate noise (SNR> 5 dB). However,
incorporating the estimatedSvv in the weight vector compu-
tation and using an Ephraim-Malah postfilter gives a better
noise suppression and less speech distortion as compared to
the beamformer/postfilter combination investigated in [2].

As an illustrative example, logarithmically scaled spec-
trograms are shown in Fig. 6, and Fig. 7, respectively.
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Figure 6: Log. spectrogram of noisy speech signal at micro-
phone #1 (above), at beamformer output designed with dif-
fuse noise assumption (middle), and at beamformer output
with estimatedSvv (below), input seg. SNR = 0 dB.

The upper image in Fig. 6 is the spectrogram of the noisy
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speech measured at microphone array channel #1. The spec-
trogram in the middle of Fig. 6 is obtained at the output of
the beamformer designed with diffuseSvv. There is substan-
tially more noise as compared to a design with estimation of
Svv and application of Tab. 1 (lower picture in Fig. 6).

The effect of the postfilter is illustrated in Fig. 7. There
is much less noise in case of the proposed beamformer de-
sign. A closer look to the lower spectrogram unveils virtu-
ally no musical noise phenomenon and only a slight speech
distortion. Interested readers are invited to visit the author’s
homepage and listen to the particular signals of this example.
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Figure 7: Log. spectrogram of beamformer+ postfilter out-
put with diffuse noise assumption (above), and with esti-
matedSvv (below), input seg. SNR = 0 dB.

5. CONCLUSIONS

We have presented an adaptive microphone array consisting
of a beamformer/postfilter combination. The beamformer
weights are optimized for each signal frame according to a
spatio-spectral correlation matrix estimation of the disturb-
ing noise field. Taking into account the actual noise field
parameters results in an improved noise suppression of the
beamformer as compared with beamformer designs assum-
ing a diffuse noise field. Using the proposed beamformer as
a pre-processor to a single-channel Ephraim-Malah noise re-
duction system yields an overall performance with negligible
musical noise and speech distortion, even at segmental input
SNRs less than 5 dB. The beamformer algorithm requires a
higher computational load as compared to GSC beamform-
ers. Nevertheless, the whole system is capable for real-time
operation with 16 kHz sampling frequency on today’s signal
processing hardware.
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