Journal article Open Access

Energy Efficient In-Memory Hyperdimensional Encoding for Spatio-Temporal Signal Processing

Karunaratne, Geethan; Le Gallo, Manuel; Hersche, Michael; Cherubini, Giovanni; Benini, Luca; Sebastian, Abu; Rahimi, Abbas


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="942" ind1=" " ind2=" ">
    <subfield code="a">2021-09-25</subfield>
  </datafield>
  <controlfield tag="005">20210926014823.0</controlfield>
  <controlfield tag="001">5301648</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IBM Research - Zurich</subfield>
    <subfield code="a">Le Gallo, Manuel</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IBM Research - Zurich</subfield>
    <subfield code="a">Hersche, Michael</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IBM Research - Zurich</subfield>
    <subfield code="a">Cherubini, Giovanni</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">ETH Zurich</subfield>
    <subfield code="a">Benini, Luca</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IBM Research - Zurich</subfield>
    <subfield code="a">Sebastian, Abu</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IBM Research - Zurich</subfield>
    <subfield code="a">Rahimi, Abbas</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1363971</subfield>
    <subfield code="z">md5:34a1875e77427fb6adce8b819a4907a0</subfield>
    <subfield code="u">https://zenodo.org/record/5301648/files/Y2021_TCAS_archive.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-03-25</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5301648</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">IBM Research - Zurich</subfield>
    <subfield code="a">Karunaratne, Geethan</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Energy Efficient In-Memory Hyperdimensional Encoding for Spatio-Temporal Signal Processing</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">682675</subfield>
    <subfield code="a">PROJECTED MEMRISTOR: A nanoscale device for cognitive computing</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The emerging brain-inspired computing paradigm known as hyperdimensional computing (HDC) has been proven to provide a lightweight learning framework for various cognitive tasks compared to the widely used deep learning-based approaches. Spatio-temporal (ST) signal processing, which encompasses biosignals such as electromyography (EMG) and electroencephalography (EEG), is one family of applications that could benefit from an HDC-based learning framework. At the core of HDC lie manipulations and comparisons of large bit patterns, which are inherently ill-suited to conventional computing platforms based on the von-Neumann architecture. In this work, we propose an architecture for ST signal processing within the HDC framework using predominantly in-memory compute arrays. In particular, we introduce a methodology for the in-memory hyperdimensional encoding of ST data to be used together with an in-memory associative search module. We show that the in-memory HDC encoder for ST signals offers at least 1.80&amp;times; energy efficiency gains, 3.36&amp;times; area gains, as well as 9.74&amp;times; throughput gains compared with a dedicated digital hardware implementation. At the same time it achieves a peak classification accuracy within 0.04% of that of the baseline HDC framework.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/TCSII.2021.3068126</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
6
8
views
downloads
Views 6
Downloads 8
Data volume 10.9 MB
Unique views 5
Unique downloads 8

Share

Cite as