Journal article Open Access

Energy Efficient In-Memory Hyperdimensional Encoding for Spatio-Temporal Signal Processing

Karunaratne, Geethan; Le Gallo, Manuel; Hersche, Michael; Cherubini, Giovanni; Benini, Luca; Sebastian, Abu; Rahimi, Abbas


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/c6a43a8c-5daa-4075-8478-3ff5c6612df0/Y2021_TCAS_archive.pdf"
      }, 
      "checksum": "md5:34a1875e77427fb6adce8b819a4907a0", 
      "bucket": "c6a43a8c-5daa-4075-8478-3ff5c6612df0", 
      "key": "Y2021_TCAS_archive.pdf", 
      "type": "pdf", 
      "size": 1363971
    }
  ], 
  "owners": [
    118064
  ], 
  "doi": "10.1109/TCSII.2021.3068126", 
  "stats": {
    "version_unique_downloads": 8.0, 
    "unique_views": 5.0, 
    "views": 6.0, 
    "version_views": 6.0, 
    "unique_downloads": 8.0, 
    "version_unique_views": 5.0, 
    "volume": 10911768.0, 
    "version_downloads": 8.0, 
    "downloads": 8.0, 
    "version_volume": 10911768.0
  }, 
  "links": {
    "doi": "https://doi.org/10.1109/TCSII.2021.3068126", 
    "latest_html": "https://zenodo.org/record/5301648", 
    "bucket": "https://zenodo.org/api/files/c6a43a8c-5daa-4075-8478-3ff5c6612df0", 
    "badge": "https://zenodo.org/badge/doi/10.1109/TCSII.2021.3068126.svg", 
    "html": "https://zenodo.org/record/5301648", 
    "latest": "https://zenodo.org/api/records/5301648"
  }, 
  "created": "2021-08-28T10:18:33.152556+00:00", 
  "updated": "2021-09-26T01:48:23.021572+00:00", 
  "conceptrecid": "5301647", 
  "revision": 4, 
  "id": 5301648, 
  "metadata": {
    "access_right_category": "success", 
    "embargo_date": "2021-09-25", 
    "doi": "10.1109/TCSII.2021.3068126", 
    "description": "<p>The emerging brain-inspired computing paradigm known as hyperdimensional computing (HDC) has been proven to provide a lightweight learning framework for various cognitive tasks compared to the widely used deep learning-based approaches. Spatio-temporal (ST) signal processing, which encompasses biosignals such as electromyography (EMG) and electroencephalography (EEG), is one family of applications that could benefit from an HDC-based learning framework. At the core of HDC lie manipulations and comparisons of large bit patterns, which are inherently ill-suited to conventional computing platforms based on the von-Neumann architecture. In this work, we propose an architecture for ST signal processing within the HDC framework using predominantly in-memory compute arrays. In particular, we introduce a methodology for the in-memory hyperdimensional encoding of ST data to be used together with an in-memory associative search module. We show that the in-memory HDC encoder for ST signals offers at least 1.80&times; energy efficiency gains, 3.36&times; area gains, as well as 9.74&times; throughput gains compared with a dedicated digital hardware implementation. At the same time it achieves a peak classification accuracy within 0.04% of that of the baseline HDC framework.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Energy Efficient In-Memory Hyperdimensional Encoding for Spatio-Temporal Signal Processing", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "5301647"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "5301648"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "682675", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::682675"
        }, 
        "title": "PROJECTED MEMRISTOR: A nanoscale device for cognitive computing", 
        "acronym": "PROJESTOR", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "publication_date": "2021-03-25", 
    "creators": [
      {
        "affiliation": "IBM Research - Zurich", 
        "name": "Karunaratne, Geethan"
      }, 
      {
        "affiliation": "IBM Research - Zurich", 
        "name": "Le Gallo, Manuel"
      }, 
      {
        "affiliation": "IBM Research - Zurich", 
        "name": "Hersche, Michael"
      }, 
      {
        "affiliation": "IBM Research - Zurich", 
        "name": "Cherubini, Giovanni"
      }, 
      {
        "affiliation": "ETH Zurich", 
        "name": "Benini, Luca"
      }, 
      {
        "affiliation": "IBM Research - Zurich", 
        "name": "Sebastian, Abu"
      }, 
      {
        "affiliation": "IBM Research - Zurich", 
        "name": "Rahimi, Abbas"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "article", 
      "type": "publication", 
      "title": "Journal article"
    }
  }
}
6
8
views
downloads
Views 6
Downloads 8
Data volume 10.9 MB
Unique views 5
Unique downloads 8

Share

Cite as