Conference paper Open Access

Compressed sensing recovery using computational memory

Le Gallo, Manuel; Sebastian, Abu; Cherubini, Giovanni; Giefers, Heiner; Eleftheriou, Evangelos


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/b1cfd506-b6c7-4cdb-8260-107fb2077779/Y2017_legallo_IEDM_Submitted.pdf"
      }, 
      "checksum": "md5:f372a6ec21c2e944bde424e5567efff3", 
      "bucket": "b1cfd506-b6c7-4cdb-8260-107fb2077779", 
      "key": "Y2017_legallo_IEDM_Submitted.pdf", 
      "type": "pdf", 
      "size": 906840
    }
  ], 
  "owners": [
    118064
  ], 
  "doi": "10.1109/IEDM.2017.8268469", 
  "stats": {
    "version_unique_downloads": 8.0, 
    "unique_views": 4.0, 
    "views": 5.0, 
    "version_views": 5.0, 
    "unique_downloads": 8.0, 
    "version_unique_views": 4.0, 
    "volume": 8161560.0, 
    "version_downloads": 9.0, 
    "downloads": 9.0, 
    "version_volume": 8161560.0
  }, 
  "links": {
    "doi": "https://doi.org/10.1109/IEDM.2017.8268469", 
    "latest_html": "https://zenodo.org/record/5301633", 
    "bucket": "https://zenodo.org/api/files/b1cfd506-b6c7-4cdb-8260-107fb2077779", 
    "badge": "https://zenodo.org/badge/doi/10.1109/IEDM.2017.8268469.svg", 
    "html": "https://zenodo.org/record/5301633", 
    "latest": "https://zenodo.org/api/records/5301633"
  }, 
  "created": "2021-08-28T09:53:27.691257+00:00", 
  "updated": "2021-08-28T13:48:19.072232+00:00", 
  "conceptrecid": "5301632", 
  "revision": 2, 
  "id": 5301633, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.1109/IEDM.2017.8268469", 
    "description": "<p>Computational memory (CM) is a promising non-von Neumann approach where certain computational tasks are performed within resistive memory units by exploiting their physical attributes. We propose a new method for fast and robust compressed sensing (CS) recovery of sparse signals using CM. For a signal of size N, this method achieves a potential O(N)-fold complexity reduction compared with a standard software approach. Large-scale experimental demonstrations using more than 256k phase-change memory (PCM) devices are presented along with an in-depth device analysis and array-level considerations.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Compressed sensing recovery using computational memory", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "5301632"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "5301633"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "682675", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::682675"
        }, 
        "title": "PROJECTED MEMRISTOR: A nanoscale device for cognitive computing", 
        "acronym": "PROJESTOR", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "In-memory computing, phase change memory, compressed sensing"
    ], 
    "publication_date": "2018-01-25", 
    "creators": [
      {
        "affiliation": "IBM Research - Zurich", 
        "name": "Le Gallo, Manuel"
      }, 
      {
        "affiliation": "IBM Research - Zurich", 
        "name": "Sebastian, Abu"
      }, 
      {
        "affiliation": "IBM Research - Zurich", 
        "name": "Cherubini, Giovanni"
      }, 
      {
        "affiliation": "IBM Research - Zurich", 
        "name": "Giefers, Heiner"
      }, 
      {
        "affiliation": "IBM Research - Zurich", 
        "name": "Eleftheriou, Evangelos"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "conferencepaper", 
      "type": "publication", 
      "title": "Conference paper"
    }
  }
}
5
9
views
downloads
Views 5
Downloads 9
Data volume 8.2 MB
Unique views 4
Unique downloads 8

Share

Cite as