Conference paper Open Access

Energy efficient 'in memory' computing to enable decentralised service workflow composition in support of multi-domain operations

Bent, Graham; Simpkin, Christopher; Taylor, Ian; Rahimi, Abbas; Karunaratne, Geethan; Sebastian, Abu; Millar, Declan; Martens, Andreas; Roy, Kaushik


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="942" ind1=" " ind2=" ">
    <subfield code="a">2021-10-12</subfield>
  </datafield>
  <controlfield tag="005">20211014014827.0</controlfield>
  <controlfield tag="001">5301585</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Cardiff Univ.</subfield>
    <subfield code="a">Simpkin, Christopher</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Cardiff Univ.</subfield>
    <subfield code="a">Taylor, Ian</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IBM Research - Zurich</subfield>
    <subfield code="a">Rahimi, Abbas</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IBM Research - Zurich</subfield>
    <subfield code="a">Karunaratne, Geethan</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IBM Research - Zurich</subfield>
    <subfield code="a">Sebastian, Abu</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IBM United Kingdom Ltd</subfield>
    <subfield code="a">Millar, Declan</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IBM United Kingdom Ltd</subfield>
    <subfield code="a">Martens, Andreas</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Purdue Univ.</subfield>
    <subfield code="a">Roy, Kaushik</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">5725556</subfield>
    <subfield code="z">md5:bc80027b6156e04b7cb3f5855e6bdb05</subfield>
    <subfield code="u">https://zenodo.org/record/5301585/files/bent_spie_archive.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-04-12</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5301585</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Cardiff Univ.</subfield>
    <subfield code="a">Bent, Graham</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Energy efficient 'in memory' computing to enable decentralised service workflow composition in support of multi-domain operations</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">682675</subfield>
    <subfield code="a">PROJECTED MEMRISTOR: A nanoscale device for cognitive computing</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Paper Abstract&lt;/p&gt;

&lt;p&gt;Future Multi-Domain Operations (MDO) will require the coordination of hundreds, even thousands, of devices and component services. This will demand the capability to rapidly discover the distributed devices/services and combine them into different work ow configurations, thereby creating the applications necessary to support changing mission needs. To meet these objectives, we envision a distributed Cognitive Computing System (CCS) that consists of humans and software that work together as a &amp;lsquo;Distributed Federated Brain&amp;#39;. Motivated by neuromorphic processing models, we present an approach that uses hyper-dimensional symbolic semantic vector representations of the services/devices and workflows. We show how these can be used to perform decentralized service/device discovery and work ow composition in the context of a dynamic communications re-planning scenario. In this paper, we describe how emerging analogue AI &amp;lsquo;In Memory&amp;#39; and &amp;lsquo;Near Memory&amp;#39; computing devices can be used to efficiently perform some of the required hyper-dimensional vector computation (HDC). We present an evaluation of the performance of an energy-efficient phase change memory device (PCM) that can perform the required vector operations and discuss how such devices could be used in energy-critical &amp;lsquo;edge of network&amp;#39; tactical MDO operations.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.5301584</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.5301585</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
16
7
views
downloads
All versions This version
Views 1616
Downloads 77
Data volume 40.1 MB40.1 MB
Unique views 1616
Unique downloads 77

Share

Cite as