Conference paper Open Access

Energy efficient 'in memory' computing to enable decentralised service workflow composition in support of multi-domain operations

Bent, Graham; Simpkin, Christopher; Taylor, Ian; Rahimi, Abbas; Karunaratne, Geethan; Sebastian, Abu; Millar, Declan; Martens, Andreas; Roy, Kaushik


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/d0b4e959-31ba-46d8-a63d-a6e13f800888/bent_spie_archive.pdf"
      }, 
      "checksum": "md5:bc80027b6156e04b7cb3f5855e6bdb05", 
      "bucket": "d0b4e959-31ba-46d8-a63d-a6e13f800888", 
      "key": "bent_spie_archive.pdf", 
      "type": "pdf", 
      "size": 5725556
    }
  ], 
  "owners": [
    118064
  ], 
  "doi": "10.5281/zenodo.5301585", 
  "stats": {
    "version_unique_downloads": 8.0, 
    "unique_views": 17.0, 
    "views": 17.0, 
    "version_views": 17.0, 
    "unique_downloads": 8.0, 
    "version_unique_views": 17.0, 
    "volume": 45804448.0, 
    "version_downloads": 8.0, 
    "downloads": 8.0, 
    "version_volume": 45804448.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.5301585", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.5301584", 
    "bucket": "https://zenodo.org/api/files/d0b4e959-31ba-46d8-a63d-a6e13f800888", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.5301584.svg", 
    "html": "https://zenodo.org/record/5301585", 
    "latest_html": "https://zenodo.org/record/5301585", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.5301585.svg", 
    "latest": "https://zenodo.org/api/records/5301585"
  }, 
  "conceptdoi": "10.5281/zenodo.5301584", 
  "created": "2021-08-28T08:59:02.383603+00:00", 
  "updated": "2021-10-14T01:48:27.699585+00:00", 
  "conceptrecid": "5301584", 
  "revision": 3, 
  "id": 5301585, 
  "metadata": {
    "access_right_category": "success", 
    "embargo_date": "2021-10-12", 
    "doi": "10.5281/zenodo.5301585", 
    "description": "<p>Paper Abstract</p>\n\n<p>Future Multi-Domain Operations (MDO) will require the coordination of hundreds, even thousands, of devices and component services. This will demand the capability to rapidly discover the distributed devices/services and combine them into different work ow configurations, thereby creating the applications necessary to support changing mission needs. To meet these objectives, we envision a distributed Cognitive Computing System (CCS) that consists of humans and software that work together as a &lsquo;Distributed Federated Brain&#39;. Motivated by neuromorphic processing models, we present an approach that uses hyper-dimensional symbolic semantic vector representations of the services/devices and workflows. We show how these can be used to perform decentralized service/device discovery and work ow composition in the context of a dynamic communications re-planning scenario. In this paper, we describe how emerging analogue AI &lsquo;In Memory&#39; and &lsquo;Near Memory&#39; computing devices can be used to efficiently perform some of the required hyper-dimensional vector computation (HDC). We present an evaluation of the performance of an energy-efficient phase change memory device (PCM) that can perform the required vector operations and discuss how such devices could be used in energy-critical &lsquo;edge of network&#39; tactical MDO operations.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Energy efficient 'in memory' computing to enable decentralised service workflow composition in support of multi-domain operations", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "5301584"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "5301585"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "682675", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::682675"
        }, 
        "title": "PROJECTED MEMRISTOR: A nanoscale device for cognitive computing", 
        "acronym": "PROJESTOR", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "publication_date": "2021-04-12", 
    "creators": [
      {
        "affiliation": "Cardiff Univ.", 
        "name": "Bent, Graham"
      }, 
      {
        "affiliation": "Cardiff Univ.", 
        "name": "Simpkin, Christopher"
      }, 
      {
        "affiliation": "Cardiff Univ.", 
        "name": "Taylor, Ian"
      }, 
      {
        "affiliation": "IBM Research - Zurich", 
        "name": "Rahimi, Abbas"
      }, 
      {
        "affiliation": "IBM Research - Zurich", 
        "name": "Karunaratne, Geethan"
      }, 
      {
        "affiliation": "IBM Research - Zurich", 
        "name": "Sebastian, Abu"
      }, 
      {
        "affiliation": "IBM United Kingdom Ltd", 
        "name": "Millar, Declan"
      }, 
      {
        "affiliation": "IBM United Kingdom Ltd", 
        "name": "Martens, Andreas"
      }, 
      {
        "affiliation": "Purdue Univ.", 
        "name": "Roy, Kaushik"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "conferencepaper", 
      "type": "publication", 
      "title": "Conference paper"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.5301584", 
        "relation": "isVersionOf"
      }
    ]
  }
}
17
8
views
downloads
All versions This version
Views 1717
Downloads 88
Data volume 45.8 MB45.8 MB
Unique views 1717
Unique downloads 88

Share

Cite as