Conference paper Open Access

TEACHING - Trustworthy autonomous cyber-physical applications through human-centred intelligence

Bacciu, Davide; Akarmazyan, Siranush; Armengaud, Eric; Bacco, Manlio; Bravos, George; Calandra, Calogero; Carlini, Emanuele; Carta, Antonio; Cassara, Pietro; Coppola, Massimo; Davalas, Charalampos; Dazzi, Patrizio; Degennaro, Maria Carmela; Di Sarli, Daniele; Dobaj, Jürgen; Gallicchio, Claudio; Girbal, Sylvain; Gotta, Alberto; Groppo, Riccardo; Lomonaco, Vincenzo; Macher, Georg; Mazzei, Daniele; Mencagli, Gabriele; Michail, Dimitrios; Micheli, Alessio; Peroglio, Roberta; Petroni, Salvatore; Potenza, Rosaria; Pourdanesh, Farank; Sardianos, Christos; Tserpes, Konstantinos; Tagliabò, Fulvio; Valtl, Jakob; Varlamis, Iraklis; Veledar, Omar

This paper discusses the perspective of the H2020 TEACHING project on the next generation of autonomous applications running in a distributed and highly heterogeneous environment comprising both virtual and physical resources spanning the edge-cloud continuum. TEACHING puts forward a human-centred vision leveraging the physiological, emotional, and cognitive state of the users as a driver for the adaptation and optimization of the autonomous applications. It does so by building a distributed, embedded and federated learning system complemented by methods and tools to enforce its dependability, security and privacy preservation. The paper discusses the main concepts of the TEACHING approach and singles out the main AI-related research challenges associated with it. Further, we provide a discussion of the design choices for the TEACHING system to tackle the aforementioned challenges

Files (611.9 kB)
Name Size
IEEE COINS 2021.pdf
md5:ec92b69e68f775dd32675556f41917a7
611.9 kB Download
17
18
views
downloads
All versions This version
Views 1717
Downloads 1818
Data volume 11.0 MB11.0 MB
Unique views 1313
Unique downloads 1818

Share

Cite as