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Abstract—Robot Operating System (ROS) is a de-facto
standard robot middleware in many academic and industrial
use cases. However, utilizing ROS/ROS2 in safety-critical em-
bedded applications with real-time requirement is challenging
because of C1) Non-real-time underlying hardware, C2) No
control on the host OS scheduler, C3) Unpredictable dynamic
memory allocation, C4) High resource requirement, and C5)
Unpredictable execution model for ROS nodes. In this paper,
we address these limiting factors by proposing a hardware-
software architecture -CompROS- for ROS2 based robotic
development in a Multi-Processor System on Chip (MPSoC)
platform that. The proposed hardware architecture consists of a
Hard Real-Time (HRT) RISC-V based subsystem implemented
in the Programmable Logic (PL) part of the MPSoC platform, a
Soft Real-Time (SRT) ARM-based subsystem in the Processing
System (PS) part of the MPSoC platform, and a Non-Real-
Time (NRT) PC. While the proposed hardware architecture
along with a partitioning layer overcomes the first two limiting
factors, the rest are managed by the proposed multi-layer
software architecture. We make a bare-metal implementation
of XRCE-DDS standard for PL-PS communication, while peer-
to-peer PL-PL communication is done through a proposed real-
time publish-subscribe approach. The reliable communication
for PS-PLL communication is done through utilizing C-HEAP
protocol. Further, we integrate ROS2 software layers on top
of the proposed hardware and software layers. Finally, with
respect to C5, we present a real-time execution model of ROS2
nodes by a mapping of ROS2 entities to CompROS entities,
which is validated through experimental results. We run ROS2
middleware with an executable size of less than 200 KB on an
MPSoC platform.
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I. INTRODUCTION

Predictability: the temporal behaviour of every instruc-
tion is bounded by the Worst Case Response Time (WCRT),
and Composability: there is no interference between differ-
ent applications, are considered as two important factors for
the analyzablity of real-time robotic applications in safety-
critical domains such as medical robotics and space explo-
ration [1]. Moreover, most of the robots in the mentioned
domains are Cyber-Physical Systems (CPS) [2] equipped
with a resource constrained embedded platform that suffers
from limited memory capacity, limited Operating System
(OS), etc. A common misconception is to consider a system
real-time if it is fast enough. Following e.g. [3], a system is
called real-time if it is predictable, i.e every operation has a
WCRT.

Robot Operating System (ROS) [4] is a de-facto standard
middleware in robotic development. In the ROS2 commu-

nity, it is claimed that ROS2 embraces real-time features
without formal analysis of the system, and no performance
guarantee is provided in the current ROS2 versions. The
challenges to utilize ROS2 in the mentioned real-time safety-
critical applications are: C1) Targeted hardware platforms
are mostly non-embedded architectures with unpredictable
strategies like caching. C2) Since ROS2 runs on top of a host

OS like Linux, it does not have control of the underlying

scheduler. C3) Dynamic memory allocation in the ROS2

source code makes the execution time unpredictable. C4)

ROS/ROS2 executable normally needs more than 100 MB

RAM which is a challenging demand for small embedded

systems that often have less than 1 MB of RAM. C5) There

is no formal model to compute the WCRT of a ROS2 node.

Contribution: Although some of the above mentioned
challenges have been investigated in the literature, to the best
of our knowledge, there is no integrated work to consider
all of the challenges in the context of ROS2. In this paper,
we propose an integrated hardware-software architecture for
robotic development in MPSoC platforms. More specifically,
our contributions are:

1) A hardware architecture that includes a HRT subsystem
based on CompSOC [5] concepts for real-time control
tasks, a SRT ARM-based subsystem for supervisory
control tasks, and a NRT Personal Computer (PC) for
monitoring tasks. The HRT subsystem includes a par-
titioning kernel to partition the resources into isolated
Virtual Execution Platforms (VEP) with the clock cycle-
level precision. This contribution provides a performance
analysis at the instruction level (addressing C1 and C2).

2) A software architecture that includes a Local Real-Time
Publish-Subscribe (LRTPS) communication approach for
HRT PL-PL communication, a bare-metal implementa-
tion of the XRCE-DDS standard for SRT PL-PS commu-
nication, and a lightweight predictable implementation of
ROS?2 layers on the proposed hardware architecture. Each
of these these provide a performance analysis at the task
level (addressing C3 and C4).

3) An execution model of ROS2 nodes to map the ROS2 en-
tities into CompROS VEPs. This contribution provides a
performance analysis at the application level (addressing
C5).

II. RELATED WORK

The works that fall into the scope of this paper are
categorized into the following three different classes:
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Fig. 1: CompROS Hardware Architecture

Hard real-time embedded hardware platforms: Pre-
dictability and composability in the hardware level have been
heavily studied in the literature. In terms of predictability,
Time-Triggered Architecture (TTA) [3] focused on the de-
sign and implementation of dependable real-time embedded
systems. In line with the PRET machines [6], FlexPRET [7]
is a configurable RISC-V [8] based architecture that executes
both HRT tasks and NRT performance-sensitive tasks on the
same processor. However, lack of composability in the right
place, i.e. clock cycle level of the processor, means that these
approaches are not fully predictable and composable. In a
composable platform, the behaviour of an application is not
affected by other applications. This is mainly achieved by
temporal and spatial partitioning techniques. Time Division
Multiplexing (TDM) [9] is a static and non-work-conserving
partitioning technique to provide composability on a shared
resource such as processor or memory. It has been used
by some well-known platforms such as CompSOC [5] and
MERASA [10]. In conclusion, to the best of our knowledge,
CompSOC is the only platform that considers both cycle-
accurate predictability and composability. We use CompSOC
concepts as the underlying HRT subsystem.

ROS/ROS2 in real-time embedded systems: Considering
the executable size and the sources of unpredictability such
as dynamic memory allocation in ROS/ROS2, there has been
some research on making a light-weight and real-time imple-
mentation for the embedded systems. Maruyama et al. [11]
investigated real-time potentials and constraints of ROS2
and its communication layer (DDS). The research topics
on embedded ROS are discussed in [12]. Medeiros et al.
[13] proposed FreeRTPS as a light-weight implementation
of Real-Time Publish Subscribe (RTPS) [14] protocol to
run ROS2 applications on FreeRTOS [15]. However, ROS2
Quality of Services (QoS) are ignored in their implementa-
tion, and their approach is limited to FreeRTOS as the un-
derlying OS. In [16], ROS2 was ported to the Nuttex RTOS.
However, the project was limited to the single processor
Nuttex based systems. Saito et al. [17] introduced ROSCH
as an OS level real-time DAG scheduler. By using RESCH
[18] as a loadable Linux scheduler module and a proposed
synchronization technique, they showed the applicability of
ROS for real-time control systems. However, their approach
is based on ROSI, limited to Linux scheduling modules,

ignore QoS.

Integrated architectures for robotic development in real-
time embedded systems: Chishiro et al [19] discussed the
general basis to propose a robot development framework
in many-core systems. In the same direction, Azumi et a.
[20] proposed ROS-Lite as a ROS based framework for
NoC-based embedded many-core platforms. By integrating
a proposed software layer, that runs on top of eMCOS real-
time operating system, with the Kalray MPPA-256 many-
core embedded platform they run a ROS based autonomous
driving application with low resource and energy consump-
tion. However, compared to the work presented in this paper,
ROS-Lite is based on ROS (not ROS2) that ignores DDS
based communication as a reliable and accepted communi-
cation standard in distributed real-time systems. Moreover,
off-chip communication through an uniform communication
protocol is not considered in their proposed approach. This
makes the framework less useful for multi-robot ROS/ ROS2
based applications. Furthermore, their definition of real-time
(fast enough to meet the deadline), is less strict than our
definition (requiring formal analysis) in this paper.

Wei et al. [21] proposed RT-ROS, a hybrid architecture
to run real-time and NRT ROS nodes on the same multi-
processor system that hosts two operating systems (RTOS
and NRT Linux). However, RT-ROS is based on ROS-1,
and it is not a light-weight embedded platform. H-ROS [22]
is a hardware-software architecture to design standardized
ROS2 based modular robotic hardware components such as
sensors and actuators. However, predictability and timing
aspects are ignored in this approach. The MicroROS [23]
project, replaced the default communication layer (Fast-
DDS [24]) by ePromisa XRCE-DDS [25], for a light-weight
implementation of ROS2 for small embedded devices with
limited resources. Moreover, since all the dynamic memory
allocations have been converted to a static allocation, a
source of unpredictability has been removed. However, the
main focus is on the software architecture and the real-
time aspects of the hardware are ignored. The project is
validated on a single-processor STM micro-controller with
Nuttex RTOS. In conclusion, the works presented in this
research direction do not offer real-time guarantee at the
hardware level, have large memory footprint, and are focused
on single processor.

III. CoMPROS HARDWARE ARCHITECTURE

As it can be seen in Fig. 1, the hardware architecture of
CompROS consists of three subsystems including a HRT
subsystem for real-time control, a SRT ARM subsystem for
supervisory control, and a NRT PC for system monitoring.
As the HRT subsystem, we implement a 3-tile CompSOC
platform on a Xilinx ZCU102 board that hosts a Zynq
UltraScale+ as the FPGA (PL) region. However, given the
modularity of the platform, it is easily scalable to more tiles.
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Fig. 2: CompROS Software Architecture

CompSOC Tiles: A 32-bit RISC-V processor that runs
at 100 MHz is embedded inside each tile. Each tile in-
cludes 512 KB of Instruction+Data (I+D) memory that is
implemented through the block memories of the PL. The
VKERNEL partitions the tile resources into fully isolated
VEPs by multiplexing different VEPs on the same RISC-
V processor using a TDM preemptive scheduler. The I+D
memory is also partitioned spatially among the VEPs that
run on the same tile. Memory Management Units (MMU )
translate virtual addresses physical addresses and restrict
access to allowed regions on all memories. In this version,
we partitions the tile resources into 2 isolated VEPs (each
with 256 KB of RAM). It should be mentioned that the
context switch time between TDM slots (assigned to VEPs)
is fixed and the first slot of each period is occupied by
the system application (SysVEP). The platform is globally
synchronous with a global timer, while each VEP has also
its own local VEP timer that counts only when the processor
is assigned to the VEP.

PL-PL and PL-PS communication: As it can be seen
in Fig. 1, there is a real-time dual-ported shared memory
with the capacity of 64 KB between any two tiles of the
platform that is used for inter/intra tile communication of
the VEPs. Moreover, for RISC-V to/from ARM (PL-PS)
communication, and to dynamically load programs, there is
a 32 KB dual-ported shared memory between each tile and
the SRT ARM processor in the PS side. These memories
(specified with MEMxA) are implemented using the block
memories of the PL part and each memory is segmented
between the VEPs on the tile (16 KB per VEP, 8 KB for user
in/out, 8 KB for stdin/stdout). Although the access time from
a tile to these shared memories is predictable, the access time
from the SRT subsystem is not predictable.

SRT and NRT subsystems: The second subsystem of the
CompROS architecture is a SRT subsystem that consists of
a quad-core ARM Cortex-AS53, dual-core Cortex-RSF real-
time processors, and a Mali-400 MP2 graphics processing
unit. This subsystem is used for supervisory control (like
robot navigation), programming HRT subsystem, and con-
necting the robot to the world outside. Moreover, as the
last subsystem, we have a NRT PC node that is used to
monitor multiple robots each of which hosts its HRT+SRT
subsystems. The communication from the monitoring system
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to the supervisory control system is done through wireless
network infrastructures.

IV. CoMPROS SOFTWARE ARCHITECTURE

The VKERNEL creates predictable and composable VEPs
on the RISC-V cores through spatial and cycle-accurate
temporal partitioning. Each partitioned HRT application runs
bare metal (See Fig. 2). In the SRT (PS) subsystem, a Linux
distribution (Ubuntu) is installed as the host OS. The com-
munication inside the SRT, and with the world outside (NRT
node) is done through TCP/UDP (the supported protocols by
Fast-DDS), while the low-level PL-PS interaction is done
through the C-HEAP FIFO protocol [26]. The performance
of C-HEAP is modelled using dataflow in [27]. The default
ROS2 layers (RCLCPP, RCL, RMW, and RMW Adapter) are
used to develop ROS2 applications on the SRT subsystem.
On the other hand, the ROS2 layers utilized in the HRT side
must be free of unpredictability sources such as dynamic
memory allocation. Therefore, we have made a bare-metal
version of ROS2 layers on CompROS platform as a fork
of microROS [23] by eliminating the OS dependencies and
integrating it with our communication layers. Development
of ROS2 applications on the HRT subsystem of the platform
is done in C using the RCLC APIs.

PL-PS communication with XRCE-DDS protocol: Data
Distribution Service (DDS) [28] is the default publish-
subscribe communication layer of ROS2 to provide reli-
able machine to machine communication. Despite some
lightweight implementations for DDS such as Fast-DDS
by eProsima, the memory footprint is still too large to
fit in resource-constrained embedded systems. XRCE-DDS
[29] is a Client-Agent based pub-sub standard to enable
resource constrained small embedded systems to connect
to the DDS global data space. The Agent acts as a bridge
between the Clients and other nodes in the DDS network.
At the lowest layer of the protocol, MicroCDR is used for
serialization/deserialization of DDS messages. At the top
layer, there is XRCE-DDS Client Interface for development
of Client applications on the HRT subsystem, and XRCE-
DDS Agent Interface is used to create Agent nodes on
the SRT subsystem. In the middle layer, the Client is only
dependent on the XRCE Protocol layer, while the Agent is
dependent on both the XRCE Protocol and Fast-DDS using
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standard DDS. This is because the Agent should provide the
connection between XRCE-DDS based ROS2 nodes (on the
HRT subsystem) and the nodes using the standard ROS2
architecture over the DDS network. Mpre details of the
implementation and probabilistic performance analysis can
be found in [30].

LRTPS (PL-PL real-time node-to-node communication):
When both publisher and subscriber both reside in the HRT
subsystem, communication via SRT subsystem using XRCE
is slow, and worse, SRT. To provide HRT node-to-node com-
munication there are some challenges. P1) Providing ROS2
QoS policies [31] is challenging, P2) Existing concurrent
FIFO solutions, e.g. C-HEAP [26], fail to be a wait-free
concurrent approach. P3) Every single publisher/subscriber
that runs on a specific tile can only access to two of the com-
munication memories (MEMOI, MEMO2, and MEM12). Be-
cause of P3, data may have to be duplicated across multiple
communication memories, and the data consistency should
be considered. To address these challenges, we propose the
LRTPS protocol by S1) a single wait-free pub-sub FIFO
channel, presented in [32], that allows token overwriting by
the producer. Our FIFO buffer has a WCRT even though
it uses a lock, and the QoS policies are preserved. S2) For
any topic 7i with datatype DTi, there is one FIFO for each
publisher-subscriber pair in the communication memory that
both publisher and subscriber can access.

Algorithm 1 safe and consistent write on LRTPS FIFOs

while (wec+1) % n) == rc /*FIFO full*/ do
if cclaim==0 then
pclaim=1
if cclaim==0 then
| re=(rc+1) % n

pclaim=0

Write token
wc=(wWc+1)%n

Algorithm 2 safe and consistent read on LRTPS FIFOs

if we==rc /*FIFO empty*/ then return Null;
cclaim=1

while (pclaim==1);

Read token

rc = (rc+1) % n

cclaim=0

In the example of Fig. 3, the producer node publishes
its message on topic 7i to the assigned FIFO channels in
both memories connected to the tile that hosts the producer.
On the consumer side, multiple FIFO channels per topic (2
channels in each shared memory) are received. Therefore,
the consumer picks and consumes the received tokens based
on their timestamps to respect consistency when there is
more than one publisher on a topic. Since the message com-
munication in our approach is done at the HRT subsystem,
the Deadline QoS is supported for ROS2 nodes running in

the system. According to the History QoS policy in ROS2,
the message processing queue has a maximum size equal to
the Depth (n) value. If the queue is full, the oldest messages
are dropped to make room for newer ones. We address this
by Alg. 1 and Alg. 2 to write/read on the FIFO channels. In
the write/read algorithms, we use producer/consumer claim
locks (pclaim and cclaim) for safe concurrent access. The
WCRT analysis is found in [32].

V. EXECUTION MODEL

The HRT subsystem of CompROS is a multi core sub-
system in which the tile resources are spatially and tempo-
rally partitioned into v isolated VEPs (v=2 in this paper).
Scheduling the created VEPs on each RISC-V processor
is done through a preemptive static TDM schedule. As it
is shown in Fig. 4, the TDM period for processor p is
shown by m,, the first slot of the TDM schedule (s )
is assigned to the system application (SysVEP), and each
VEP; , is assigned to slot s;,. The slot length for the
system application (so ) and the context switch time (c)
are 5K and 2K cycles respectively. In our task model, for
control and dataflow applications where the computation
and communication times are independent, we compute their
WCRT separately. In this model, a node first reads its input
messages, computes the output messages, and send them.
The CompSOC hardware architecture allows us to compute
the WCET of computation and communication [5] from
which we then drive the WCRT. For a specific task that runs
in VEP; ,,, given the WCET of the computation part (e“"?),
the computation WCRT (#“7) is calculated by Eq. 1. Note
that Egs. 2,3 are independent. However, the publisher WCRT
depends on the WCRT of the code segments of publisher and
subscriber, and similarly for the subscriber.
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A. PL-PS/PL-PL communication WCRT: Since the PL-
PS communication involves the SRT subsystem, it is not
possible to guarantee the communication time. However,
this problem is addressed in the XRCE-DDS standard by
defining a Timeout parameter as the maximum waiting time
for the Agent response. In other words, the Client (pub-
lisher/subscriber at the HRT subsystem) sends its request to
the Agent (at the SRT subsystem) and waits to receive the
pub/sub response. According to the standard, if the defined
Timeout happens, the Client continues to the next round.
In this approach, we may loose some messages but the
WCRT of pub/sub on a topic is bounded by the defined



Timeout. Moreover, as presented in [32], the WCRT of
publish/subscribe functions on a sgeciﬁc topic in PL-PL real-
time communication (rgil’; and r/"P) are guaranteed through
Eq. 2 and Eq. 3 respectively. In these equations, the publisher
runs in VEP;,, with slot length s, ,,, and the subscriber runs
in VEP; ; with slot length s; .. Moreover, e,|_g is the WCET
of the lines 1-8 of the producer (Alg. 1), e.o—5 represents

the WCET of the lines 2-5 of the consumer (Alg. 2), etc.
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Fig. 5: Mapping ROS2 entities to CompROS entities

B. Application Response Time: It is important to mention
that the pub-sub paradigm is a transparent communication
model (whiteboard model) in which the publisher sends
its messages to a topic regardless of who subscribes on
the topic and vice-versa. Therefore, the WCRT of a pub-
lisher/subscriber task (+***) depends only on the computa-
tion time of the task (e“""?) and the pub/sub time to/from the
interested topic. Therefore, we can find Aok for a publisher
task by the equation F/** < remp 4 r,fif + Timeout, and the

WCRT of a subscriber task by replacing rﬁﬁf with 727
in the same equation. It is worth mentioning that in the
publication/subscription time on a topic, the message is
published/subscribed to/from both PL-PL/PL-PS channels to
be visible to all nodes on the DDS network.
C. ROS2 execution model on CompROS: In general, there
are three entities in the default execution model of the ROS2
ecosystem. Node: a modular computation process to perform
a specific task in the robot. Callback: The functionality of
a ROS2 node is comprised of different callback functions.
Executor: In every single time of the processor the executor
decides about which callback from which node should be
executed. In other words, scheduling of the executors on
the processor is done by the OS scheduler, while internal
scheduling of the executor over the assigned nodes and their
callbacks is done by the scheduler inside the executor.
Casini et al. [33] showed that the default executor of
ROS?2 is not real-time and it suffers from priority inversion,
unpredictable update, one message per callback, and no
custom ordering. In [34], a static Single Threaded (ST)
executor was proposed to address the mentioned problems.
As it can be seen in Fig. 5, we assign each ST-Executor
with one node and single callback function to a VEP on
CompROS HRT side. Therefore, the timing isolation is

NonROS RT NonROS RT
App. App.

guaranteed by the VEP concept, and there is no priority
assignment, and no priority inversion in the used executor.
Since our HRT subsystem is a multi core subsystem hosting
isolated VEPs on each tile, we can run ROS2 applications (in
ROSVEP) and non-ROS real-time applications (in NonROS
VEPs) in parallel on the same system. In this model, the
WCRT of a ROS2 node with a callback function on a topic
can be calculated by the discussed equations in Sec. V.B.

VI. EXPERIMENTAL EVALUATION

As the experimental setup, we made our implementation
on a Xilinx ZCU102 board that includes a Zynq UltraScale+
XCZU9EG with 600K system logic cells, 32.1 MB memory,
and 2520 DSP slices in the FPGA region. On the PS side, the
board includes a 64 bit quad-core Arm Cortex-AS53, a dual-
core Cortex-R5F real-time processor, and a Mali-400 MP2
graphics processing unit with 4 GB of DRAM. The PS side
hosts the SRT subsystem of our architecture. Connection
to the board is done through SSH from a NRT PC. In the
configuration time of the platform, we assign 100K clock
cycles to each VEP;, on a tile as the TDM slot size s;
(introduced in Sec. V) assigned to the VEP.

A. Real-time software development on the HRT MPSoC

To validate the hardware predictability, we need to make
sure that the WCRT of a fully compute-intensive real-time
task with a given WCET is guaranteed on the platform. We
developed 6 dummy real-time tasks with different workload
(WCET), and assign each task to a specific VEP (6 VEPs on
the platform). As it was mentioned in Sec. III, we measure
the ET and RT of each task respectively with the VEP timer
and global timer. Moreover, we calculate the WCRT of each
task by Eq. 1. As it can be seen in Table I, the measured RT
for all real-time tasks are less than the calculated WCRT.
It is worth mentioning that increasing the TDM slot size of
a specific VEP leads to a decrease in the RT and WCRT
of the task that is hosted by the VEP, but increases the RT
and WCRT of other VEPs on the tile. Therefore, it can be
used to prioritise the tasks on the same tile. Considering
the composability of the platform, the reported values for a
specific task are the same even if we remove the other tasks
on a tile.
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Fig. 7: Timeout effect in the subscriber side



TABLE I: HRT SOFTWARE DEVELOPMENT ON THE PLATFORM

Task Task.1 | Task.2 Task.3 Task.4 Task.5 Task.6
(tile,vep) | (0, 1) , 2) 1,1 1, 2) 2,1 (2,2)
ET 7019 15426 28031 57449 217126 420226
RT 14019 55426 77031 181449 | 665126 | 1321226
WCRT 62000 93000 124000 | 217000 | 713000 | 1364000

B. PL-PS communication through XRCE-DDS

To measure the performance of our implementation of
XRCE-DDS for PL-PS communication, we conducted ex-
periments on the pure XRCE-DDS communication (ig-
noring ROS2 layers). In these experiments, the publisher
and subscriber run on the HRT subsystem as the XRCE-
DDS Clients, and the XRCE-DDS Agent runs on the
SRT subsystem of the platform. However, all the messages
sent/received in the HRT subsystem, are also accessible
over DDS network. The measured throughput and RT over
different message size is presented in Table II. Moreover,
to show the effect of Timeout parameter on bounding the
WCRT of the publisher, we added random bad requests in
the publisher side to make the Agent take long time. To
check the Timeout effect on the subscriber side, we made
the published messages failed to keep the subscriber waiting
for the longest time. As it is shown in Fig. 6 and Fig. 7,
the Timeout effect on the publisher and subscriber side are
validated respectively.
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Fig. 8: Histogram of Actual publisher RT in LRTPS

C. LRTPS real-time PL-PL communication

We conducted some experiments on the LRTPS layer
(ignoring ROS2 layers) to validate the system predictabil-
ity in terms of node-to-node PL-PL communication. The
experiments were done in various configurations with mul-
tiple publishers/subscribers to make sure that the proposed
approach is consistent with multiple numbers of nodes. To
evaluate the effect of Alg. 1 and Alg. 2 in non-blocking pub-
sub communication, our consumer node in these experiments
is delayed by 1000 cycles after each subscription. This is to
validate that the producer is not blocked even if the buffer
is full (History QoS). We first measure the WCET of the
publisher by running the publisher algorithm on the platform
for 20K iterations. The ET of the publisher varies between
300 to 700 clock cycles. The variation in the publisher ET
is related to the scenarios where the buffer is full and the rc

120.00%

80.00%

60.00%

40.00%

0.00%

variable should be shifted. The same experiment on the read
function (Alg. 2) results the actual WCET of the consumer
(subscriber) node. We also measure the actual RT of the
publisher using the global timer of the HRT subsystem. As
it is presented in Fig. 8, the actual RT of the producer
node is bounded by the calculated WCRT (Sec. V.A). It
should be mentioned that the variation in the actual RT is
related to the context switch time. The variation is within
the bound and it itself is quite predictable. Moreover, the
throughput (TP) of message publication in both PL-PL. and
PL-PS communication is compared in Fig. 9 over different
message sizes. As it was expected, the TP in LRTPS is at
least 6 times more than PL-PS XRCE-DDS communication.
It is also showed that by increasing the message size, the
TP in LRTPS is not affected heavily since the read/write
time to the shared memory is fast in the HRT subsystem. It
should be noted that in these experiment, the computation
power of each HRT tile is shared between two isolated VEPs.
Therefore, the reported TP numbers can be almost doubled
when the whole processor is assigned to a single VEP.

TABLE II: TP (MSG PER SEC) IN PL-PS COMMUNICATION

Message | Publisher TP | Subscriber TB | App. (end-2-end TP)
10B 1281 1056 1173
25B 1028 893 961
50B 860 794 763
100B 602 539 513

20000 D- ROS2 application development:

As a proof to run ROS2 applications on CompROS
platform, we consider a simple usecase with one ROS2
sensor node on tile 1, one ROS2 actuator node on tile 2,
one ROS2 real-time control node on tile 3, and a ROS2
supervisory control node on the SRT part. In this usecase,
the supervisory control node sends set points to the actuator
node based on the data that it receives from the sensor node.
Moreover, the real-time control node receives and processes
the data from the sensor node through the real-time PL-
PL communication. There is also a monitoring node on the
NRT PC to monitor the whole nodes. In this experiment,
we measured the actual ET and the actual RT of each
ROS2 node that runs on the HRT subsystem over 500K
iterations. As it is shown in Fig. 10, the measured values
for the control node is significantly less than other nodes.
This is due to node-to-node PL-PL communication since the
other sensor and actuator nodes have interaction with the
supervisory control node that runs on the SRT subsystem
through the XRCE-DDS Agent node. Since the supervisory
control node and the monitoring node run on the SRT and
NRT subsystems, measuring their timing behaviour does not
give useful information in terms of predictability. It should
be mentioned that the final executable size for the whole
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Fig. 10: Actual WCET and WCRT on ROS2 nodes

software layers on the proposed HRT subsystem is less than
200 KB which is significantly less than the default ROS2
ecosystem that requires more than 100 MB of memory.

Time (millisecond)

VII. CONCLUSION AND FUTURE WORK

In this paper we presented CompROS, a composable
ROS2 based hardware-software architecture for predictable
and composable robotic development in real-time embedded
systems. CompROS includes a HRT multi core subsystem
for real-time control, a SRT subsystem for supervisory
control, and a NRT PC for system monitoring. The HRT
subsystem has a formal model at the instruction level, and
its integration with the proposed software architecture has
a formal model at the task level. Based on the proposed
execution model, we define the WCRT of a single ROS2
node that runs on the HRT subsystem of the platform.
ECSEL JU grant agreement No 826610 (COMP4DRONEYS)
supported this work.
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