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Abstract—Hand in hand with the inevitable increase in vehicle
connectivity solutions, the high security and safety demands for
automotive embedded systems are emphasizing the importance
of thorough testing of newly developed software components.
The high quality of the software is ensured through the usage
of various tools at the development stage. This paper introduces
an implementation of such a tool, which is based on a standard
microcontroller platform and provides functionalities of a Rapid
Prototyping System (RPS). The implementation is based on the
universal calibration protocol XCP and utilization of an XCP-
Master controller. The tool also acts as an intelligent watchdog,
as it enables close behavioural monitoring of novel functionalities
within an Electronic Control Unit (ECU). That makes the tool
especially suitable for dependable AI testing in the scope of safety-
critical applications. This is potentially a crucial building block of
a safety net for testing of novel functionalities on a ’grey-box-like’
ECU. Furthermore, the XCP-Master controller also provides the
possibility to utilize the platform as an Ethernet-CAN message
gateway for access to remote devices.

I. THE AUTOMOTIVE TOOLING CHALLENGE

The peculiarities of the automotive applications exert unique
challenges to the associated embedded systems [1]. The rig-
orous safety and security features, with a frequently added
real-time aspect, demand thorough testing procedures in a
realistic environment. This is matched by a constant increase
in the complexity of the vehicle controls, hence enforcing
more complex communications in the evolving system of
systems [2]. The added complexity is posed by usage of
automotive Electronic Control Units (ECU) from a wide range
of providers. These devices execute the embedded vehicular
software, which can contain up to 100 million lines of code
[3]. The inevitable time-consuming and inefficient software
testing procedures, prior to integration into ECUs, are creating
a conflict between the drive to improve existing functionalities
and the need for their meticulous testing.

AVL regularly encounters this issue when performing verifi-
cation, validation or calibration of the developed functions on
in-situ ECUs. The challenge is tackled in collaboration with
Graz University of Technology, which also brings additional
competencies in the field of automotive safety.

A. Rapid Prototyping System

A possible solution presents itself in the form of Rapid
Prototyping Systems (RPS). Such systems are capable of
directly interfacing to existing integrated systems to conduct
measurements and calibration. The added possibility to bypass
ECU functions is exploited when isolating specific aspects or
functions within the ECU. This enables rapid deployment and
testing of new software components, without any hardware-
specific considerations [4]. Such RPSs are readily available
on the market. These high-end devices couple a multitude of
functionalities with high processing power at a considerable fi-
nancial cost. Hence, their usage is limited and are often shared
between software engineers. In contrast, the required testing
procedures frequently do not demand the full capabilities of
these RPSs [5]. The tests often rely on available functional-
ities and could be performed at a fraction of the available
processing power. Hence, we present the work that targets the
usage of a microcontroller-based platform, which provides the
possibility to access an ECU and perform measurement and
calibration. Aside from the conceptualisation, the presented
work goes into the implementation of such a tool.

B. Intelligent Watchdog

Just as all computer systems, embedded systems are also
prone to errors. These result from a range of factors, such as
random bit flips when writing to the RAM, or environmental
influence, such as radiation. Some faults cause permanent
system failure, with severe consequences in the safety-critical
scenarios. Such faults are detectable if using watchdogs. These
system monitors form general fault detection schemes. They
are much simpler systems than the ones they are monitoring
and can be connected either as external devices, or imple-
mented directly on the same board as the monitored system.
Once it detects a fault, the watchdog’s task is to restore the
system to its former, fully functional state [6].

While monitoring the system’s state, the watchdog gathers
data of interest and evaluates them. Any unexpected behaviour
triggers an action from the watchdog. Those actions include
setting an alert or triggering a system reset signal. If a
watchdog can perform more complex tasks than just triggering
signals and executing a command, then it is classified as an
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intelligent watchdog. Such watchdogs are usually based on
more advanced algorithms for system evaluation and more
complex decision making processes. Watchdogs are inevitable
in safety-critical applications, such as automated driving (AD),
which has zero tolerance for faults [7] . The trustworthiness
of autonomous vehicles mandates safety and security. The
trust is the key component for acceptance of AD by drivers
[8] and other stakeholders. Hence, the vehicles must fully
handle safety-critical situations [9], yielding that the safety-
critical components must have redundant systems and system
monitors for ensuring that the system does not fail under
any circumstance. When it is needed, the built-in redundancy
takes over the control of the system and a decision is reached
in terms of operating mode [10]. The intelligent watchdog
supports this need for monitoring of the safety-critical systems
through utilization of the XCP protocol to directly access
the memory and to gather the data of interest from the
monitored system. These features of the intelligent watchdog
are especially crucial for development of systems that adapt
during operation time (such as adaptive systems or AI-based
systems).

C. Ethernet-CAN Gateway

CAN remains the standard automotive communication pro-
tocol for message exchange between different ECUs. However,
many tools used for accessing and testing ECUs are deployed
using a standard PC architecture, which does not contain a
CAN module by default. The need for message exchange
between Ethernet and CAN-based devices presents a common
challenge when using remote devices. Implementation of an
Ethernet-CAN gateway would enable access to the CAN-based
devices from remote locations over the Internet.

II. THE METHOD

The implementation relies on the Universal Calibration
Protocol XCP for enabling RPS functionalities. The core
of the offered solution is based on an integrated XCP-
Master Controller, which manages all necessary processes.
The platform connects to a target ECU via XCP on CAN and
performs measurements, calibration, and function bypassing.
The platform is also configured as an XCP-Slave and thus
provides access for other XCP-Master tools such as CANape.
This enables the run-time configuration of the RPS-parameters.

As the RPS-implementation runs on a basic microcontroller
platform, it shows resource limitation issues early on. Such in-
sights are absent when using powerful commercial RPSs. De-
spite being computationally inferior, this RPS-implementation
offers an added flexibility and, in many cases, serves as a low-
cost alternative to commercially available RPSs. The resulting
benefit is the ability to check the behaviour of the tested
functions before their real-hardware integration.

This implementation exploits the XCP connection for mon-
itoring the behavior of functions within an ECU. It is easily
configurable to gather ECU data and evaluate it according to
a predefined algorithm within the platform itself. Thus, the
platform can also act as an intelligent watchdog, which could

be important especially for usage of AI-based or run-time
adaptive systems in safety-related context. This implemen-
tation is extremely useful during hardware-in-the-loop tests,
for capturing the behaviour of certain signals of the complete
testing procedure. Furthermore, as it is possible to configure
the intelligent watchdog to freely evaluate and act upon the
data, it can also be configured to execute the same ECU
function and thus act as a redundant system.

Usage of the Ethernet and CAN transport layers is the
basis for the third use case: Ethernet-CAN gateway, which
enables message exchange between Ethernet and CAN-based
devices. This is useful when a remote connection to an external
device on a CAN bus is required. By communicating over the
Internet and trough the Ethernet-CAN gateway, one can reach
the devices that have access to the CAN bus.

A. The RPS
The RPS (figure 1) is implemented on an Infineon’s develop-

ment platform, which is centred around TC277 microcontroller
from its Aurix™family. The algorithms are developed using
C programming language. Infineon’s MultiCAN library is
handling the CAN module on the development platform. The
open-source lwIP stack controls the Ethernet module.

This tool chain is geared towards utilization of the XCP
protocol and development of an XCP-Master Controller. It
also integrates an XCP-Slave driver, which provides an added
benefit of allowing other calibration tools, such as CANape,
to perform run-time configuration of the RPS.

Fig. 1. RPS Concept.

1) The Implementation: The XCP-Master Controller en-
ables the platform to access ECU’s memory and manipulate its
data. The ensued core capabilities include measurement and
calibration. A derivative of these two combined capabilities is
ECU function bypass. To perform measurement, calibration
or bypass, the RPS must be aware of all addresses that
correspond to the variables of interest, their sizes in memory
and their values. Thus, two buffers are implemented. One of
those buffers stores the measurement-related data, while the
other one stores calibration-related data, including calibration-
enabling switch variables.



This specific implementation does not use all XCP-Master
features. It focuses on resources that enable connection, mea-
surement and calibration. The communication channel to an
ECU is the CAN bus, which is still the standard vehicular
communication interface and XCP on CAN is commonly
present within ECUs. Therefore, a CAN transport layer is
developed for the XCP-Master Controller.

One of the key features of the proposed RPS is its ease
to adopt functions-under-test into own structure and hence
bypass the function of interest in a target ECU. This is possible
because of the ability to measure and calibrate ECU variables.
Thereby, the RPS measures the input values of the function
of interest from the target ECU and feeds those values to the
function to be tested, which is integrated on the RPS-platform.
The RPS then executes the function and the output values are
sent for calibration to the target ECU, thereby bypassing the
ECU function.

A software mechanism of the automotive ECUs is an
integrated switch, which enables manipulation by calibration
tools. The proposed platform uses this switch to bypass the
ECU internal variables. The value of this switch variable
determines if the program flow within the ECU should use
the internally calculated value or the value which is incom-
ing from an external device. Therefore, care must be taken
when setting/resetting these switch-variables when performing
calibration and bypass. This implementation sets the required
calibration switch variables during the first calibration cycle.

2) The Test Environment: The test setup uses a production
ECU. Selection of the test function is based on ease of
demonstration. This function is interchangeable i.e. it is used
as a representative example for the demonstration. In this
instance, a function for regulating the duty cycle of a cooling
pump is chosen for testing. The source code of the function
is integrated into the RPS-Platform and configured for usage
as a bypass function of its equivalent counterpart, which is
integrated into the ECU. At the start, the bypass function
and its ECU counterpart are identical. As no changes were
made to the function on the RPS-platform, measurements
show a comparison between the RPS-calculated and the ECU-
calculated values. The input value of the function is the
temperature, which is simulated by the RPS and calibrated
into the ECU (Number 1 in figure 2). The values are linearly
increasing from 0°C to 100°C, with cyclic repetitions. This
temperature value, which is calibrated into the ECU, is again
”measured” by the RPS. This ensures that the input values
for the function to be bypassed in the RPS are provided from
the ECU (Number 2 in figure 2). Upon obtaining the input
signals, the RPS executes the function to be bypassed and
generates the outputs (Number 3 in figure 2). Finally, the
output values, together with the calibration switch-variables
(only during the first calibration cycle), are sent for calibration
to the target ECU, thus bypassing the ECU-calculated output
values (Number 4 and 5 in figure 2).

A debugger is connected to the ECU during this process.
It logs the calibrated and calculated duty cycle values, as
well as the calibrated temperature values. Two methods, DAQ

and Polling, are employed for testing both XCP measurement
methods. Furthermore, as in some cases RPSs are used to just
scale a signal value, this use case is also integrated into the
test by scaling the calibrated duty cycle with a factor of 1.1.

B. The Intelligent Watchdog

This implementation enables the desired watchdog ap-
proach. It gathers data from a monitored ECU via XCP on
CAN and evaluates it based on the users’ needs. Furthermore,
it can also impact the behaviour of the ECU via XCP calibra-
tion. The conceptualisation is shown in figure 3.

The watchdog, which is connected to an ECU via XCP on
CAN during hardware-in-the-loop tests, gathers data that are
to be closely monitored. The watchdog can also be configured
to act as a redundant system to an ECU by executing the
same function. By gathering the function output values from
the ECU, it can ensure proper execution of the function. If it
detects abnormal behaviour, it can overtake execution of that
function, hence providing fail-operational performance. This
feature can also be used for ensuring safe application limits
of adaptive or AI-based systems. Especially in the context of
these systems safety strategies can be based on the intelligent
watchdog feature and its establishment of a safety frame.

1) The Implementation: To access the ECU to be moni-
tored, the XCP-Master Controller is used in the same way
as the RPS implementation. The initial step is to connect to
the ECU and to set up the measurement configuration. For
watchdog purposes, only DAQ is viable as the measurement
method, since it guarantees that all measurements are from
the same computation cycle and that they correlate to each
other. After receiving the data to be monitored, it proceeds
with evaluation based on the implemented algorithm. In this
work, the watchdog is configured to execute the same function
as the monitored ECU and compare the output values of both
executions. The watchdog detects when the values start to
considerably deviate from each other for too long.

2) The Test Environment: The RPS test setup is reused to
evaluate the intelligent watchdog. The watchdog is configured
to execute the same function as the monitored ECU, thus
acting as a redundant system to that function. It connects
to the ECU via XCP on CAN and gathers the data to be
monitored, in this case, the ECU-calculated duty cycle. It
also compares the duty cycle that is calculated within ECU
with own calculated counterpart. At the time, new ECU
measurements are disabled to enable fault simulation. As the
deviations are formed between the watchdog-calculated values
and the ECU-measured values, it is possible to observe the
watchdog’s reactions.

C. The Ethernet CAN interface

The implementation of Ethernet and CAN transport layers
for utilization of the XCP-Master and XCP-Slave drivers laid
the foundation for the Ethernet-CAN interface. The payload
of incoming messages over one layer can be extracted and
embedded into the payload of a message for another layer.



Fig. 2. Bypass Concept.

Fig. 3. Intelligent watchdog concept.

1) The Implementation: Incoming Ethernet packages trig-
ger a function, which extracts the message payload. The
payload is forwarded to a structure for defining CAN message
payloads. To conclude, the function for triggering CAN mes-
sage transmission is executed and the payload of the Ethernet
message is forwarded to the CAN bus, as in figure 4.

This process is reversible i.e. an XCP master can connect
to the platform via XCP on Ethernet and obtain measurement
results from a device which is connected via XCP on CAN to
the platform.

2) The Test Environment: The interface is evaluated by
busload measurements. CANape is used as the XCP-master
and the same test ECU as in previous measurements as the
XCP-slave. The Ethernet-CAN interface is used for directly
transferring the incoming messages from one layer to another.
The CAN baud rate is set to 1 Mb/s and the bus is loaded with
an increasing number of signals, until the maximum busload is
reached. Measurements are performed with DAQ and polling
measurement mode, and with 4-byte and 1-byte signals.

III. MEASUREMENTS AND EVALUATION

This section considers measurement results obtained during
the evaluation of all three use cases. Besides the visual
representation, it also includes the discussion of results.

Fig. 4. Ethernet-CAN interface concept.

A. Validating RPS

The results associated with the DAQ measurements during
bypass of the function and scaling of the duty cycle are
shown in figure 5. The switch process is observed through
enabled calibration during the measurement taking. Before the
activation of the switch, the function output value and the
ECU calculated value are identical. As the switching takes
place, there is an observable jump in the function output signal
from the ECU-calculated value, to the scaled RPS-calibrated
value. The associated messages which travel over the CAN bus
during one calibration cycle are documented in [11]. Figure 5
depicts a linear temperature increase from 0°C to 100°C. The
third plot in the figure shows the ratio between the function
output value and the ECU-calculated value of the duty cycle.
Just as anticipated, the ratio jumps from 1.0 to 1.1 at the
moment when calibration is enabled. Due to the computation



errors (i.e. floating point arithmetic and rounding of errors),
the ratio deviates between 1.098 and 1.108

Fig. 5. Bypass of a variable with a scaling factor of 1.1 by using DAQ.

As this test is performed in DAQ mode, all signal values
are sent to the RPS-platform cyclically by the ECU itself.
The CAN traffic demonstrates 12 signal values being obtained
within a time window of 0.9 ms. Furthermore, the calibration
of the two signals takes 0.8 ms.

Figure 6 shows the obtained signal values during the mea-
surement with Polling. The test setup remains the same as
when implementing DAQ measurements. The depicted signal
behaviour is identical to that with DAQ-based measurements.
Hence, we conclude the correct implementation of the func-
tion bypass. The CAN traffic during the testing process are
documented in [11]. In this case, data gathering of 12 signals
with polling takes 2.7 ms. Calibration of 2 signals takes the
same amount of time as with DAQ, 0.8 ms.

Fig. 6. Bypass of a variable with a scaling factor of 1.1 by using Polling.

As expected, the main limitation of the polling implemen-
tation is based on a limited communication speed between
the RPS and the target ECU. A proper implementation must
consider the number of signals that should be measured, the
time taken to execute the bypassing function and the number
of signals that should be calibrated.

In line with these observations, DAQ measurement method
provides improved performance over the polling functionality
and is the recommended measurement method.

B. Function execution monitoring

The measurement results obtained during evaluation of the
watchdog are shown on figure 7. The watchdog is executing
the same function as the ECU, thereby gathering the ECU-
calculated values and checking their correlation to its own
calculated values. The upper plot of figure 7 shows the two
duty cycle values. When the new ECU-measurements are
disabled, the watchdog error counter begins to increase, as
shown in the plot below. When this counter reaches a critical
value ( set to be 10 in this case), the watchdog fault detection
signal is triggered. Furthermore, to observe the watchdog
recovery stage, the fault is disabled at a point of time. Thereby,
it can be observed that the watchdog error counter begins to
decrease until it reaches the normal values again and the fault
detection signal gets deactivated.

Fig. 7. Intelligent watchdog fault detection.

C. Gateway performance measurements

Figure 8 shows the busload measurements obtained during
evaluation of the Ethernet-CAN interface with the DAQ and
Polling measurement methods. In the case of DAQ, it can
be observed that usage of 4-byte signals yield the maximum
busload at 140 signals, while it takes 560 1-byte signals to
saturate the bus. This is due to the fact that CANape configures
four 1-byte signals to be transferred with one XCP message,
while with 4-byte messages it is capable of transferring only
one signal per message.



In case of polling, reduced performance is achived in
comparison to DAQ measurement method. This is caused by
the need to send a poll request from master to slave for
every signal. Thereby, the average time delay between two
successive poll requests is 0.5 ms, making it impossible to
utilize the full potential of CAN bus bandwidth. Regardless of
the signal size, the maximum number of signals which could
be reliably transferred is 20.

Fig. 8. Ethernet-CAN busload measurements.

IV. LESSONS LEARNED

The measurement results confirm that the XCP protocol
can be successfully utilized on a microcontroller platform for
enabling RPS capabilities in the form of measurement, calibra-
tion and bypass. Furthermore, using this implementation pro-
vides insight into how the tested functions perform hardware-
near to a real ECU, possibly showing problems with resource
limitations early on. However, this implementation is limited
by the CAN communication speed. An adequate utilization
demands the measurement and calibration processes, as well
as the execution of the function to be bypassed on the RPS,
to be completed within one computation cycle of the function
to be tested. The performance is also heavily impacted by
the chosen data gathering method. DAQ provides improved
performance compared to the polling. Furthermore, the per-
formance of the test ECU can also impact the performance
of this implementation. This is due to the fact that the RPS
always waits for a response from the ECU before sending a
new command, thus possibly causing communication delays.

Evaluation of the watchdog implementation shows that XCP
is also usable for monitoring purposes. The watchdog is
a useful tool for closely monitoring certain signals during
hardware-in-the-loop tests but can also act as a redundant
system. Thereby, it is important to utilize DAQ measurement
method, since for watchdog purposes, it is essential for the
measurement data to be in correlation.

The Ethernet-CAN interface implementation successfully
transfers messages from one layer to another. Thereby, if it is
used for transferring measurement data, DAQ provides much
better performance compared to polling.

V. CONCLUSION

This work summarises the implementation of three different
use cases, all of which carry a highly exploitable value.

The rapid prototyping system functionality enables calibration
and bypass of functions within an ECU, but thereby the
limiting factor is the CAN communication speed. The whole
bypass process must be shorter than the computation cycle
of the tested function. The intelligent watchdog functionality
provides the possibility to closely monitor specific signals
and implement specific fault detection and decision making
algorithms. Its potential usage includes being an additional
safety net during hardware-in-the-loop tests, enabling close
monitoring of parameters of the ECU under test. This ability to
closely monitor the behaviour of new ECU functions turns the
watchdog into a powerful tool for dependable AI testing in the
scope of safety-critical applications. With the Ethernet-CAN
gateway, XCP messages are easily communicated between
the CAN and Ethernet transport layers, hence achieving an
easy access to devices on a CAN bus for remote monitoring
and control over the Internet. As all three use cases are
implemented on a standard microcontroller platform, a minor
investment is required to return high value to automotive
developers.
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