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ABSTRACT
Reducing the number of secondary data used to estimate the
Covariance Matrix (CM) for Space Time Adaptive Process-
ing (STAP) techniques is still an active research topic. Within
this framework, the Low-Rank (LR) structure of the clutter is
well-known and the corresponding LR STAP filters have been
shown to exhibit a smaller SNR loss than classical STAP fil-
ters, 2r secondary data (r is the clutter rank) instead of 2m (m
is the data size) is needed to reach a 3dB SNR loss. By using
other features of the radar system, other properties of the CM
could be exploited to further reduce the number of secondary
data: this is the case for active systems using a symmetrically
spaced linear array with constant pulse repetition interval. In
this context, we propose to combine the resulting persymmet-
ric property of the CM and the LR structure of the clutter to
perform the CM estimation. In this paper, the resulting STAP
filter is shown, both theoretically and experimentally, to ex-
hibit good performance with fewer secondary data: 3dB SNR
loss is achieved with only r secondary data.

Index Terms— STAP, Low-Rank clutter, Persymmetry,
Perturbation Analysis.

1. INTRODUCTION

In Space Time Adaptive Processing (STAP) for radar applica-
tions [1], the disturbance is composed of white Gaussian ther-
mal noise plus ground clutter. In this paper, we assume that
the ground clutter is heterogeneous and that it can no longer
be modeled by a Gaussian process. To take this heterogeneity
into account, one can use the Spherically Invariant Random
Vector (SIRV) product model, first introduced by Yao [2].
Moreover, the ground clutter Covariance Matrix (CM) is
known to possess only a few non-zero eigenvalues [3], re-
sulting in a low-rank structure. This low rank-structure can
be exploited for target detection by designing adaptive filters
which require much less secondary data than conventional
adaptive schemes with equivalent performance [4, 5]. These
low-rank STAP filters require the estimation of the projector
onto the clutter subspace, which itself requires the estima-
tion of the CM. The latter is estimated from the secondary

The authors thank the DGA/MI for the STAP data.

data which consist of noise plus clutter only. The Sample
Covariance Matrix (SCM) is usually used for this purpose.
Moreover, many applications can lead to a particular struc-
ture of the CM. Such a situation is frequently met in array
processing and in particular in radar systems using a sym-
metrically spaced linear array for spatial domain processing,
or symmetrically spaced pulse train for temporal domain
processing [6, 7, 8]. In these systems, the CM has the per-
symmetric property. It is well known that this persymmetric
structure could be exploited to improve the estimation qual-
ity. In particular, the persymmetric Maximum Likelihood
Estimate (MLE) of the CM is used instead of the SCM [9, 10]
to improve the performance of adaptive detectors. But in a
Low-Rank context, this persymmetric structure is not often
used in detectors or STAP filters.

We propose in this paper to build our projector onto the
clutter subspace from this MLE which results in a new LR
STAP filter. We also investigate the theoretical SNR Loss,
based on a perturbation analysis [11], of this new LR STAP
filter in SIRV clutter plus white Gaussian noise context, ex-
tending existing results available in the literature for the SCM
in Gaussian clutter [5]. In particular, we show that the fi-
nal result does not depend on the SIRV texture which implies
that the SCM is sufficient to estimate the CM (normalization
of secondary data is not needed). Simulations with simulated
data and real data (real clutter STAP and synthetic targets) il-
lustrate the theoretical result: this new STAP filter needs two
times less secondary data than the classical LR STAP filter for
equivalent performances.

2. LOW-RANK STAP FILTER

2.1. Signal Model

STAP [1] is applied to airborne radar in order to detect mov-
ing targets. Typically, the radar receiver consists in an array of
N antenna elements processing M pulses in a coherent pro-
cessing interval. In the following, let us set m = NM . In
this framework, we assume that a known complex signal d
corrupted by an additive disturbance n is in x ∈ Cm:

x = αd + n, (1)
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where α is a complex attenuation. We assume to have K
secondary data xk which only contain the disturbance:

xk = nk k = 1, . . . ,K (2)

We assume that n and nk are independent and share the same
statistical distribution and are modeled as the sum of a clutter,
c or ck, and a white Gaussian noise, b or bk:

n = c + b
nk = ck + bk k = 1, . . . ,K

(3)

The processes b and bk are modeled as a zero-mean com-
plex Gaussian noise C N (0, λIm) (Im is the identity ma-
trix). Concerning the clutter c and ck, we consider that their
power in each cell k and the cell under test is different. In
such a situation, it is common to model this kind of clutter by
a SIRV [12]. A SIRV is a non-homogeneous Gaussian ran-
dom vector with random power: its randomness is induced by
spatial variation in the radar backscattering. The SIRV [2]
c (resp. ck) is the product of a positive random variable
τ (resp. τk), called the texture, and a m-dimensional inde-
pendent complex Gaussian vector C N (0,C) g (resp. gk),
called the speckle, with zero-mean and CM C = E(ggH) =
E(gkg

H
k ):

c =
√
τg

ck =
√
τkgk k = 1, . . . ,K

(4)

In classical STAP context, we are able to evaluate the clut-
ter rank thanks to the Brennan’s formula [13] which leads
to a low rank structure for the STAP clutter c and ck, e.g.
rank (C) = r � m. The speckle CM, C, can be thus decom-
posed as:

C =

r∑
i=1

λiuiu
H
i (5)

where λ1 > λ2 > . . . > λr > λr+1 = . . . = λNM = 0
are the eigenvalues of C and {u1, . . . ,ur,ur+1, . . . ,uNM}
are the associated eigenvectors. The CM of n and nk is then
given by:

Σ = E[τ ]C + λIm (6)

Many applications can result in a CM that exhibits some par-
ticular structure. For radar systems using a symmetrically
spaced linear array for spatial domain processing, or sym-
metrically spaced pulse train for temporal domain process-
ing [6, 7, 8], the CM Σ has the persymmetric property:

Σ = JmΣ∗Jm, (7)

where Jm is the m-dimensional antidiagonal matrix having 1
as non-zero elements. The signal vector is also persymmetric
d = Jmd∗. The persymmetric property is used by transform-
ing the complex primary data (1) and secondary data (2) into
real data. The persymmetric operation can be characterized
by an unitary matrix T defined as:

T =


1√
2

(
Im/2 Jm/2
iIm/2 Jm/2

)
for m even

1√
2

 I(m−1)/2 0 J(m−1)/2

0
√

2 0
iI(m−1)/2 0 iJ(m−1)/2

 for m odd

(8)
Let us introduce the transformed data by T: x′ = Tx, x′k =
Txk, d′ = Td, c′ = Tc, c′k = Tck, b′ = Tb and b′k =
Tbk. The primary and the secondary data (1), (2) become
after transformation by T :

x′ = d′ + c′ + b′

x′k = c′k + b′k k = 1, . . . ,K
(9)

The CM of data (9) is then Σ′ = TΣTH . Its eigendecompo-
sition is:

Σ′ =

r∑
i=1

E[τ ]λiu
′
iu
′H
i + λ

m∑
i=1

u′iu
′H
i

= S′Σ + λIm

(10)

where
{
u′1, . . . ,u

′
r,u
′
r+1, . . . ,u

′
m

}
are the eigenvectors of

Σ′. We notice that the matrix covariance rank is unchanged
by the operator T. Let us introduce the pseudo-inverse, M′,
of S′Σ:

M′ =

r∑
i=1

1

E[τ ]λi
u′iu

′H
i (11)

We define the projector onto the clutter subspace Π′c
and the projector onto the orthogonal of the clutter subspace
Π′⊥c [4, 5]:

Π′c =

r∑
i=1

u′iu
′H
i

Π′⊥c = Im −Π′c

(12)

2.2. Optimal and Sub-optimal STAP filters

The optimal STAP filter is known to be defined as [1]:

w′opt = Σ′−1d′, (13)

whereas in low-rank assumption, it is expressed as [4, 5]:

w′lropt = Π′⊥c d′ (14)

In practical cases, since the CM Σ′ (and therefore also Π′c) is
unknown, it is necessary to estimate them from the secondary
data x′k (9).

This estimation is classically performed by using the
SCM, but the persymmetric structure of Σ could be exploited
to improve the estimation quality. The persymmetric MLE
of the CM could be used instead of the SCM. In [9, 10], the
MLE, denoted R̂′ is given by:

R̂′ = Re(TR̂SCMTH) (15)

where R̂SCM is the SCM computed from (2). From the
eigenvectors {û′1, . . . , û′m} of R̂′, the estimates of the projec-
tors (onto the subspace clutter and its complement) by using
the persymmetric structure of the CM are defined as [4, 5] :
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Π̂′c =

r∑
i=1

û′iû
′H
i

Π̂′⊥c = Im − Π̂′c

(16)

Finally, the adaptive filter ŵ′ studied in this paper is:

ŵ′ = Π̂′⊥c d′ (17)

We propose in next section to compute its theoretical perfor-
mances.

3. THEORETICAL SNR LOSS

3.1. Definition of the SNR Loss

In the sequel, we assume that the target steering vector d′ is
normalized and does not belong to the clutter subspace:

S′Σd′ = M′d′ = Π′cd
′ = 0 (18)

It follows from (10) and (12)

Σ′d′ = λd′

Σ′−1d′ = 1
λd′

Π
′⊥
c d′ = d′

(19)

Let us now compute the SNR Loss. The filter output is
expressed as:

w′Hx′ = αw′Hd′ + w′Hn′ (20)

The Signal to Noise Ratio, SNRout, at the filter output is:

SNRout =
|α|2|w′Hd′|2

E [w′Hn′n′Hw′]
=
|α|2|w′Hd′|2

w′HΣ′w′
(21)

SNRout is maximum when w′ = w′opt and its value is:

SNRmax = |α|2d′HΣ′−1d′ (22)

The SNR Loss, ρ, is the ratio between the SNRout, computed
for w′ = ŵ′, and SNRmax. After some simplifications us-
ing (18) and (19), ρ is written as:

ρ =
SNRout
SNRmax

= λ

(
d′HΠ̂′⊥c d′

)2

d′HΠ̂′⊥c Σ′Π̂′⊥c d′
(23)

We propose in next section to evaluate the SNR Loss, ρ, using
a perturbation analysis technique known to be valid for large
K.

3.2. Perturbation Analysis

Actually, the estimation error ∆Σ′ = R̂′−Σ′ on Σ′ induced
a perturbation in the estimates Π̂′c and Π̂′⊥c which is given up
to the second order with respect to ∆Σ′ by:

Π̂′c = Π′c + δΠ′c + δ2Π′c
Π̂′⊥c = Π′⊥c − δΠ′c − δ2Π′c

(24)

where δΠ′c and δ2Π′c are defined as [11]:
δΠ′c = Π′⊥c ∆Σ′M′ + M′∆Σ′Π′⊥c
δ2Π′c = Π′⊥c ΓM′ + M′Γ∗Π′⊥c + Π′cΦΠ′c + Π′⊥c ∆Σ′M′2∆Σ′Π′⊥c

(25)
where matrices Γ and Φ are second order terms in ∆Σ′. After
some algebraic manipulations (not detailed due to a lack of
space), we obtain the second order expression of ρ (23):

ρ = 1− d′HR̂′
(

1
λM′ + M′2) R̂′d′

= 1− ‖
(

1
λM′ + M′2)1/2 R̂′d′‖2

(26)

To obtain a simpler expression of ρ, let us set:(
1

λ
M′ + M′2

)1/2

=
r∑

i=1

aiu
′
iu
′H
i with ai =

1

E [τ ]λi

√
E [τ ]λi + λ

λ

(27)
and

z =
(

1
λM′ + M′2)1/2 R̂′d′

zk = Re
((

1
λM′ + M′2)1/2 x′kx

′H
k d′

) (28)

Eq. (26) can be rewritten as:

ρ = 1− ‖z‖2 with z =
1

K ′

K′∑
k=1

zk, (29)

with K ′ = 2K. For large K ′, as assumed in this paper, the
Central Limit Theorem (CLT) ensures that z is Gaussian dis-
tributed. Its first and second order moments follow from those
of zk and will be now investigated. The SNR Loss distribu-
tion will be obtained from these results. The first order mo-
ment of zk is:

E [zk] = Re
((

1
λM′ + M′2)1/2E [x′kx′Hk ]d′)

= Re
((

1
λM′ + M′2)1/2 Σ′d′

)
= 0,

(30)
since u′Hi d′ = 0 for i ≤ r. Let us now derived the second
order moments of zk. By setting:

U = [u′1 . . .u
′
r]

yk = UHx′k and (yk)r+1 = d′Hx′k
y = UHx′

, (31)

each element of yk can be written as follows:

(yk)i =
√

(τkλi + λ)χ1
k,i exp (jθk,i) i = 1, . . . , r

(yk)r+1 =
√
λχ1

k,r+1 exp (jθk,r+1)
,

(32)
where χ1

k,i is a Chi-square variable with 1 degree of freedom,
θk,i is an uniform variable on [0 , 2π], and all variables are
independent. Therefore, we obtain:

zk = Re

(
r∑
i=1

ai(u
′H
i x′k)(x′Hk d′)u′i

)

= Re

(
r∑
i=1

ai(yk)i(y
∗
k)r+1u

′
i

) (33)

The second order moments of zk can be easily obtained
from (32) and (33):
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E
[
zkz

H
k

]
=

r∑
i=1

a2
iE
[
(τkλi + λ)λχ1

iχ
1
r+1

]
u′iu

′H
i (34)

where χ1
i and χ1

r+1 are respectively two independent Chi-
square variables with 1 degree of freedom.

The SNR Loss distribution is deduced from (29), (34) and
the CLT. It can be shown that:

ρ = 1− 1

K ′

r∑
i=1

(
E [τ ]λi + λ

E [τ ]λi

)2

χ1
i , (35)

with K ′ = 2K. In the case of a strong clutter (a realistic
hypothesis in STAP context), we have E [τ ]λi � λ for i =
1, . . . , r. Then, (35) can be reduced as:

E [ρ] ≈ 1− r

2K
(36)

By comparing this result to the classical result of [4, 5], we
notice that a 3dB SNR Loss is reached for K = r, instead
of K = 2r when the persymmetric structure is not taken into
account. Moreover, we notice that the final result does not de-
pend of the texture τ . We illustrate this result in next section
by means of two STAP simulations with simulated data and
real data (containing real clutter and synthetic targets).

4. NUMERICAL SIMULATIONS

4.1. Validation of Theoretical SNR Loss

We consider the following STAP configuration to check the
theoretical SNR Loss of Eq. (35). The number N of sensors
is 8 and the numberM of coherent pulses is also 8. The center
frequency and the bandwidth are respectively equal to f0 =
450 MHz and B = 4 MHz. The radar velocity is 100 m/s.
The inter-element spacing is d = c

2f0
(c is the celerity of light)

and the pulse repetition frequency is fr = 600 Hz. The clutter
rank is computed from Reed-Mallet formula [1] and is equal
to r = 15. Therefore, the clutter has a low-rank structure
since r = 15 < NM = 64.

The CM of the Gaussian clutter, C, is computed using
the model presented in [1]. To simulate the SIRV clutter, we
choose for the texture τ a Gamma distribution with shape pa-
rameter ν = 1 and scale parameter 1/ν = 1 (which results in
E [τ ] = 1). The identity matrix is next added to build the CM
Σ of Eq. (6). The Clutter to Noise Ratio (CNR) is 25 dB.
We next obtain Σ′ of Eq. (10) by using the matrix T. The
eigendecomposition of this last matrix allows to obtain eigen-
values λ1, . . . , λr, λ and therefore the theoretical SNR Loss
of Eq. (35).

In the same STAP configuration, K secondary data have
been simulated. These secondary data allow us to obtain the
SCM R̂SCM and the persymmetric SCM R̂′ of Eq. (15).
From its eigendecomposition, the sub-optimal STAP filter ŵ′

of Eq. (17) has been computed and the SNR Loss of Eq. (23)
has been evaluated using 1000 trials.

The same steps are used to evaluate the numerical and
theoretical SNR Loss computed from the classical Low-Rank
STAP filter built from the SCM. Theoretical result for Gaus-
sian clutter is well known [5] and the result for SIRV clutter
could be found in [14].

Figure 1 shows the numerical and the theoretical SNR
Losses obtained from Low-Rank STAP filters built from SCM
and persymmetric SCM for different values of K. We notice
that the numerical SNR Losses are very close to the theoret-
ical ones which validates the theoretical formula of Eq. (35).
Moreover, we see that the Low-Rank STAP filter based on the
persymmetric SCM yields better performance than the classi-
cal Low-Rank one.

Fig. 1. Theoretical SNR Loss of LR STAP built from SCM (solid line
black), Numerical SNR Loss of LR STAP built from SCM (dashed line *
black), Theoretical SNR Loss of LR STAP built from Persymmetric SCM
(solid line red), Numerical SNR Loss of LR STAP built from Persymmetric
SCM (dashed line * red) in function of K.

4.2. Real Clutter Data

The STAP data are provided by the agency DGA/MI: the clut-
ter is real but the targets are synthetic. The number of sensors
is N = 4 and the number of coherent pulses is M = 64. The
center frequency and the bandwidth are respectively equal to
f0 = 10 GHz and B = 5 MHz. The radar velocity is given
by V = 100 m/s. The inter-element spacing is d = 0.3 m
and the pulse repetition frequency is fr = 1 kHz. For this
particular STAP datacube, the clutter is fitted by our clut-
ter data model of Eq. (3) since its statistic is shown slightly
non-homogeneous [15]. The clutter to noise ratio is equal to
20 dB. In this scenario, a target with a signal to clutter ra-
tio of -5 dB is present at (4 m/s, 0 deg, cell 216). The total
number of secondary data is K = 408. The clutter rank ob-
tained from Brennan’s rule [13] is equal to r = 45. This
value is small in comparison to the full size of clutter CM,
MN = 256. The outputs of adaptive low-rank STAP filters,
Λ̂LR−SCM = |dHΠ̂⊥c x|2 and Λ̂′LR−SCM = |d′HΠ̂′⊥c x′|2
(new LR STAP filter proposed in this paper), are used. Fig-
ures 2 and 3 show results of Λ̂LR−SCM and Λ̂′LR−SCM for
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respectively 100 (almost 2r) et 50 (almost r) secondary data.
As expected in the theoretical section, we notice that the per-
symmetry property allow to reduce the number of secondary
data needed for a correct result.

Fig. 2. Λ̂LR−SCM (left) and Λ̂′LR−SCM (right) with 100 cells to esti-
mate the CM.

Fig. 3. Λ̂LR−SCM (left) and Λ̂′LR−SCM (right) with 50 cells to estimate
the CM.

5. CONCLUSION

In this paper, we have proposed a new LR STAP filter by using
the persymmetry property of the CM. This filter has been de-
rived by using data transformed by a unitary matrix T. Then
it has been theoretically analyzed through the derivation of
the SNR loss. Finally, in a context of a LR-SIRV clutter, the
resulting STAP filter is shown, both theoretically and experi-
mentally, to exhibit good performance with fewer secondary
data: 3dB SNR loss is achieved with only r secondary data.
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