Conference paper Open Access

Federated Reservoir Computing Neural Networks

Bacciu, Davide; Di Sarli, Daniele; Faraji, Pouria; Gallicchio, Claudio; Micheli, Alessio


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.5256697">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.5256697</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.5256697"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Bacciu, Davide</foaf:name>
        <foaf:givenName>Davide</foaf:givenName>
        <foaf:familyName>Bacciu</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Pisa</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Di Sarli, Daniele</foaf:name>
        <foaf:givenName>Daniele</foaf:givenName>
        <foaf:familyName>Di Sarli</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Pisa</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Faraji, Pouria</foaf:name>
        <foaf:givenName>Pouria</foaf:givenName>
        <foaf:familyName>Faraji</foaf:familyName>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Gallicchio, Claudio</foaf:name>
        <foaf:givenName>Claudio</foaf:givenName>
        <foaf:familyName>Gallicchio</foaf:familyName>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Micheli, Alessio</foaf:name>
        <foaf:givenName>Alessio</foaf:givenName>
        <foaf:familyName>Micheli</foaf:familyName>
      </rdf:Description>
    </dct:creator>
    <dct:title>Federated Reservoir Computing Neural Networks</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2021</dct:issued>
    <dcat:keyword>Reservoir Computing</dcat:keyword>
    <dcat:keyword>Federated Learning</dcat:keyword>
    <dcat:keyword>Recurrent Neural Networks</dcat:keyword>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2021-08-25</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/5256697"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/5256697</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.5256696"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/teaching-h2020"/>
    <dct:description>&lt;p&gt;A critical aspect in Federated Learning is the aggregation strategy for the combination of multiple models, trained on the edge, into a single model that incorporates all the knowledge in the federation. Common Federated Learning approaches for Recurrent Neural Networks (RNNs) do not provide guarantees on the predictive performance of the aggregated model. In this paper we show how the use of Echo State Networks (ESNs), which are efficient state-of-the-art RNN models for time-series processing, enables a form of federation that is optimal in the sense that it produces models mathematically equivalent to the corresponding centralized model. Furthermore, the proposed method is compliant with privacy constraints.&lt;br&gt; The proposed method, which we denote as Incremental Federated Learning, is experimentally evaluated against an averaging strategy on two datasets for human state and activity recognition.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.5256697"/>
        <dcat:byteSize>223420</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5256697/files/Incremental_Federated_Learning__Zenodo_.pdf"/>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
29
50
views
downloads
All versions This version
Views 2929
Downloads 5050
Data volume 11.2 MB11.2 MB
Unique views 2525
Unique downloads 4444

Share

Cite as