Conference paper Open Access

INPUT COMPLEXITY AND OUT-OF-DISTRIBUTION DETECTION WITH LIKELIHOOD-BASED GENERATIVE MODELS

Serra, Joan; Álvarez, David; Gómez, Vicenç; Slizovskaia , Olga; F. Núñez, José; Luque, Jordi


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.5253740">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.5253740</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.5253740"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Serra, Joan</foaf:name>
        <foaf:givenName>Joan</foaf:givenName>
        <foaf:familyName>Serra</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Dolby Laboratories, Barcelona, Spain</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Álvarez, David</foaf:name>
        <foaf:givenName>David</foaf:givenName>
        <foaf:familyName>Álvarez</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Universitat Politècnica de Catalunya, Barcelona, Spain</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Gómez, Vicenç</foaf:name>
        <foaf:givenName>Vicenç</foaf:givenName>
        <foaf:familyName>Gómez</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Universitat Pompeu Fabra, Barcelona, Spain</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Slizovskaia , Olga</foaf:name>
        <foaf:givenName>Olga</foaf:givenName>
        <foaf:familyName>Slizovskaia</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Universitat Pompeu Fabra, Barcelona, Spain</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>F. Núñez, José</foaf:name>
        <foaf:givenName>José</foaf:givenName>
        <foaf:familyName>F. Núñez</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Universitat Pompeu Fabra, Barcelona, Spain</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Luque, Jordi</foaf:name>
        <foaf:givenName>Jordi</foaf:givenName>
        <foaf:familyName>Luque</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Telefónica I+D, Research, Barcelona, Spain</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>INPUT COMPLEXITY AND OUT-OF-DISTRIBUTION DETECTION WITH LIKELIHOOD-BASED GENERATIVE MODELS</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2020</dct:issued>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/Horizon 2020 Framework Programme - Research and Innovation action/871793/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2020-04-30</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/5253740"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/5253740</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.5253739"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/accordion"/>
    <dct:description>&lt;p&gt;Likelihood-based generative models are a promising resource to detect out-of- distribution (OOD) inputs which could compromise the&amp;nbsp;robustness or reliability of a machine learning system. However, likelihoods derived from such models have been shown to be problematic for detecting certain types of inputs that sig- nificantly differ from training data. In this paper, we pose that this problem is due to the excessive influence that input complexity has in generative models&amp;rsquo; likelihoods. We report a set of experiments supporting this hypothesis, and use an estimate of input complexity to derive an efficient and parameter-free OOD score, which can be seen as a likelihood-ratio, akin to Bayesian model compari- son. We find such score to perform comparably to, or even better than, existing OOD detection approaches under a wide range of data sets, models, model sizes, and complexity estimates.&lt;/p&gt;</dct:description>
    <dct:description>Accepted for ICLR2020</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.5253740"/>
        <dcat:byteSize>1941308</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5253740/files/input_complexity_and_out_of_di.pdf"/>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/Horizon 2020 Framework Programme - Research and Innovation action/871793/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">871793</dct:identifier>
    <dct:title>Adaptive edge/cloud compute and network continuum over a heterogeneous sparse edge infrastructure to support nextgen applications</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
17
12
views
downloads
All versions This version
Views 1717
Downloads 1212
Data volume 23.3 MB23.3 MB
Unique views 1414
Unique downloads 1212

Share

Cite as