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Abstract 22 

Climate change causes changes in the timing of life-cycle events across all trophic 23 
groups. Spring phenology has mostly advanced, but large, unexplained, variations are 24 
present between and within species. Each spring, migratory birds travel tens to tens of 25 
thousands of kilometers from their wintering to their breeding grounds. For most 26 
populations, large uncertainties remain on their exact locations outside the breeding 27 
area, and the time spent there or during migration. Assessing climate (change) effects on 28 
avian migration phenology has consequently been difficult due to spatial and temporal 29 
uncertainties in the weather potentially affecting migration timing. Here, we show for 30 
six trans-Saharan long-distance migrants that weather at the wintering and stopover 31 
grounds almost entirely (≈80%) explains inter-annual variation in spring migration 32 
phenology. Importantly, our spatiotemporal approach also allows for the systematic 33 
exclusion of influences at other locations and times. While increased spring 34 
temperatures did contribute strongly to the observed spring migration advancements 35 
over the 55-year study period, improvements in wind conditions, especially in the 36 
Maghreb and Mediterranean, have allowed even stronger advancements. Flexibility in 37 
spring migration timing of long-distance migrants to exogenous factors has been 38 
consistently underestimated due to mismatches in space, scale, time, and weather 39 
variable type.  40 

Significance Statement 41 

Migratory birds show alarming declines across the globe, especially birds that migrate over 42 
long-distances. A limited ability to adjust spring arrival to climate change at the breeding 43 
grounds, especially compared to residents and shorter-distance migrants, is thought to be a 44 
major cause. Our results show that breeding area arrival of cross-continental migrant birds is 45 
nevertheless, similarly to short-distance migrants, largely driven by weather conditions at the 46 
wintering and stopover grounds. Additionally, our study indicates that not only temperature 47 
rise but also more favorable wind conditions have allowed birds to arrive earlier. A better 48 
understanding of climate change influences on the timing of biological phenomena is vital to 49 
understanding and ultimately battling the consequences of climate change on population 50 
demographics.  51 

Introduction 52 

Ample evidence now exists that climate change is already impacting a broad range of 53 
organisms across all taxa, from plants to mammals, and across the globe (1–3). Migratory 54 
species are likely to be particularly vulnerable to climate change, as they presumably evolved 55 
to profit from spatiotemporally distinct, yet largely predictable, seasonal patterns of natural 56 
resource productivity (4, 5). Populations of long-distance, e.g. trans-Saharan, migratory bird 57 
species are currently declining considerably faster than those of resident or short-distance 58 
migrants (6, 7). Climate change has been repeatedly suggested to be one of the major causes 59 
of these (differences in) population declines (4, 6, 8, 9), yet the specific mechanisms through 60 
which this might be occurring are anything but clear (4, 6, 7, 10–12). A limited ability of 61 
long-distance migrants to adjust spring arrival to climate change at the breeding grounds has 62 
been suggested to be a major contributing factor (8, 13). If the distance between wintering and 63 
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breeding grounds is rather limited, spatiotemporal (auto-)correlations in the weather between 64 
the two areas render the conditions at the former to be a somewhat reliable cue to estimate 65 
appropriate arrival at the latter (14). For larger distances, these connections no longer hold, 66 
which, together with reduced seasonality in the tropics, has contributed to the hypothesis that 67 
long-distance migrants must rely primarily on endogenous rhythms for spring migration 68 
timing (15).  69 
For a long time, it was indeed, and perhaps continues to be, thought that spring migration of 70 
long-distance migrants, especially the onset, relies primarily, or at the very least much more 71 
than for short-distance migrants, on endogenous rhythms (11, 15–18). Initially, this led to the 72 
suggestion that neither conditions at the wintering nor stopover areas en route to the breeding 73 
grounds have much influence on arrival at the breeding grounds (4, 13). Notwithstanding, 74 
strong advancements in spring migration timing of long-distance migratory birds have been 75 
repeatedly reported over the past two decades (11, 19–22). This has led to an ongoing debate 76 
with two somewhat opposing, albeit not necessarily mutually exclusive hypotheses. Some 77 
argue that given spring departure is under strong endogenous control and long-distance 78 
migrants have a limited ability to phenotypically adjust their advancement along the migration 79 
route, the advancement in arrival at the breeding ground is thus most likely to be caused by an 80 
evolutionary response in spring departure timing at the wintering grounds (19, 20, 23). 81 
Meanwhile, however, many studies have also been reporting on correlations between spring 82 
arrival (or passage) advancement of long-distance migrants and climate (change) at 83 
(approximate) wintering areas, but especially (potential) stopover areas along the migration 84 
route (11, 20, 21, 24). As a result, some suggest that phenotypic responses to weather along 85 
the migration route is the main mechanism of advancement for long-distance migrants, while 86 
spring departure from the wintering grounds changes little because it is under strong 87 
endogenous control (17, 18, 21). While mainly limited to a number of songbirds, the 88 
experimental evidence on internal clocks and the relevance of photoperiod as a trigger of 89 
migration are irrefutable (15, 25). Nonetheless, under laboratory conditions, endogenous 90 
rhythms often stray away rather far from one-year lifecycles, sometimes up to several months 91 
(15). Moreover, outside of experimental laboratory settings, environmental conditions 92 
encountered by individuals at the departure and stopover areas at the same date are different 93 
each year. Making the best decision, hence, inevitably entails some flexibility in the migratory 94 
response (25).      95 
A major hurdle in investigating potential climate change effects on spring migration 96 
phenology, and consequently in further unraveling the exact mechanisms through which the 97 
observed advancements take place, has been the large uncertainties about where and when 98 
most individual migratory birds or populations exactly go to outside the breeding area, 99 
including which routes they take there (14, 25). One approach to deal with the spatial 100 
uncertainty has been to use large-scale climate indices, e.g. El Niño indices or the North 101 
Atlantic Oscillation index (21). Others have similarly used summary values of weather (or 102 
vegetation) conditions by averaging over (very) large areas, such as the entire Sahel region 103 
(20, 25) or the entire known wintering area of the species. The validity and biological 104 
meaning of the reported effects of such large-scale indices has recently, however, been 105 
strongly questioned (26). Many others resorted to using climatic conditions measured at the 106 
area of passage or arrival, even though these are not necessarily related to those where the 107 
birds are coming from and hence are more likely reacting to (14, 25). Next to these potential 108 
mismatches in space and scale, strong assumptions are generally also made on the timing, i.e. 109 
start and duration, of the climatic influence. The vast majority of studies use variables defined 110 
by months, e.g. monthly average temperature or monthly precipitation (14). Only sometimes, 111 
ad hoc periods are decided upon based on the species’ ecology (21, 25), and although the 112 
exact timing of influences is in most migrant species and populations perhaps just as uncertain 113 



4 
 

as the locations, only very rarely an explicit time window search has been applied to 114 
determine the most likely time period of influence (14, 24).  115 
Temperature has been repeatedly shown to be the most important exogenous factor impacting 116 
spring migration timing (11, 14, 25, 27), yet precipitation and wind effects have also been 117 
shown to have an effect (14, 28). For migratory herbivores, e.g. geese, primary productivity 118 
has been proposed to be a more likely cue or even better predictor of spring migration 119 
phenology. While it has been suggested that this green wave hypothesis could even be 120 
extended to insectivorous (or carnivorous) migrants (29, 30), it actually seems, even for 121 
herbivores, far from ubiquitously applicable (5).  122 
In summary, the ongoing debate about the extent and mechanisms of climate change 123 
influences on spring migration phenology of long-distance migrants, has proven challenging 124 
due to the difficulties in identifying the appropriate location, time, scale, and type of possible 125 
weather influences. This resulted in most studies to resort to very rough spatial and temporal 126 
approximations or guesses of possible climatic influences. The inherent spatiotemporal inter- 127 
and auto-correlation of weather variables, however, strongly increases false positive 128 
probabilities for such approaches, further exacerbating the issue by resulting in many 129 
‘significant’ yet biologically meaningless correlations (14). Not surprisingly then, reported 130 
effects of weather on spring migration timing have been strongly heterogeneous, and the 131 
current evidence on the location, time and types of climate change effects on spring migration 132 
phenology of long-distance migrants birds has remained largely anecdotal and often 133 
contradictory.  134 
We use a recently developed spatiotemporally systematic method (14, 31) to overcome much 135 
of the challenges and uncertainties in matching the right location, time, and type of weather 136 
influences on spring migration phenology. The method consists of two main analyses parts. 137 
First, a per grid cell analysis is performed for each species of all possible time windows of 138 
any length between two given dates, for each weather variable and over a spatial grid 139 
covering the area of interest to the studied process. In other words, as few as possible 140 
assumptions are made on which weather variable influences spring migration in which 141 
location or during which timeframe. Instead, we search for the best performing time window 142 
for each grid cell and weather variable type (using the ‘climwin’ R package (32, 33)), by 143 
comparing AICc model values with a base model that consists of the temporal trend for that 144 
particular species. By applying the same procedure to a number of randomizations of the 145 
weather data, we then estimate the probability of obtaining a similar performing ‘best’ time 146 
window by chance only. Importantly, the method not only enables identifying the area, time, 147 
and type of the most likely weather influences for each species, but also excluding other areas, 148 
times, and types of weather that are very unlikely to be of any influence. For each species, this 149 
first step leads to a long-list of “weather variable – location – time window” combinations, 150 
henceforth called candidate weather signals, that might possibly be influencing the migration 151 
phenology at the location of observation. Due to spatiotemporal (auto-)correlation in the 152 
weather data, however, the long-list still contains many spurious candidate weather signals 153 
(14). In the second part of the analysis, the long-list of candidate weather signals for each 154 
species is then analyzed using an ensemble of variable importance methods to obtain a final 155 
list of the few most likely “weather variable – location – time window” influences on 156 
migration phenology.  157 
We applied the method to the mean spring passage dates of six long-distance migrant species 158 
at the island of Helgoland (Germany) over the period 1960-2014 (Table S1 and Table S3), 159 
searching a spatial grid that covers all somewhat possible wintering or spring stopover 160 
locations prior to passage at Helgoland (see the Methods - Weather data section).  As such, 161 
we first simultaneously determined the space, time window, and type of the most likely 162 
weather influences on the inter-annual variability in spring migration phenology (Table S8 to 163 
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Table S10). After determining the most influential weather influences for each of the six 164 
species, we then combined their effects on migration phenology with their change over time 165 
to assess the contribution of each climatic effect to the overall advancement in spring 166 
migration of the respective species (Table S12 and Table S13). A more detailed description of 167 
each step of the methodology is provided in the Materials and methods section. The code and 168 
data to replicate our results are available in a public repository (34). 169 

Results 170 

We found that a mixture of wind, temperature, and precipitation effects at the winter and 171 
spring stopover grounds (Fig. 1), explains between 72% and 86% of the variance in spring 172 
migration phenology of long-distance migrants (Table 1). Predictive R2 (calculated using 173 
leave-one-year-out) were very similar to adjusted R2 (35) values, confirming robustness of the 174 
final identified weather signals. Repetitions of the analysis over 200 randomizations of each 175 
species’ MSPD, furthermore, confirmed that such strong relationships (i.e. such high adjusted 176 
and predictive R2 values) are extremely unlikely (0%) to be obtained due to chance alone 177 
using our method (see Materials and Methods, Fig. S5 and Table S11). While we searched for 178 
weather influences over an area spanning from northern Scandinavia to Cameroon, and from 179 
Iceland and the Canary Islands to Poland, Greece, Libya, and Chad (see Materials and 180 
methods, Table S2, and Fig. S1 to Fig. S4), we only found weather influences at locations that 181 
are very likely winter or spring migration stopover locations (Fig. 1). The majority of the 182 
weather influences, especially in the case of winds, seem to typically be located just prior or 183 
after crossing an ecological barrier, such as the Sahara desert or the Mediterranean Sea (Fig. 184 
2a). Additionally, temperature in central Europe, especially Germany, just prior to passage at 185 
Helgoland, seems to play an important role in fine-tuning migration progress over the last 186 
stretch of spring migration. An apparent lack of wind influences after crossing the 187 
Mediterranean strongly fits with the fact that from thereon birds are migrating almost 188 
exclusively over land. They can hence make a landing to rest or refuel at any time, rendering 189 
favorable wind conditions less important. Temperature conditions this far north along the 190 
route, however, are likely to indeed become much more informative and predictive about the 191 
conditions further north at the breeding grounds, indicating similar cue responses at these 192 
latitudes as observed in many short-distance distance migrants (14). 193 
The time windows of the weather influences typically occurred from about one to two months 194 
before the start of their migration passage at Helgoland (across the whole study period) up to 195 
just prior or during the period of migration passage at Helgoland (Fig. 1). Most, if not all, of 196 
the time windows occurred just prior or during periods that birds are likely to be present at 197 
their winter and stopover locations, even though we allowed for time windows of any size 198 
between 1 and 365 days or 1 and 182 days, and starting up to 365 or 182 days prior to July 1 199 
for temperature and precipitation, and wind, respectively. For some of the time windows, 200 
some uncertainty was present in the exact timing due to the inherent temporal autocorrelation 201 
of weather variables (Table S10).  202 
Wind was the most influential weather type on inter-annual variability in spring migration 203 
phenology (44% of the overall weather type importance), but especially also in terms of 204 
causing the spring migration advancement (52%; Fig. 2; Table S13). Temperature had a 205 
similarly strong impact on inter-annual variability (41%), but this was somewhat reduced 206 
when assessing impacts on the temporal advancements in spring migration (36%). The role of 207 
precipitation was comparatively rather minor (around 15% in both cases). These results on the 208 
relative weather type importance strongly question whether the somewhat established 209 
hypothesis that temperature is the most important exogenous factor impacting spring 210 
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migration phenology (14, 18, 25, 27), actually holds for long-distance migrant birds in 211 
specific, or even in general.  212 
For two of the six study species, rather strong linear temporal trends towards advancement 213 
still remained after accounting for the most influential weather signals (Garden Warbler: -0.09 214 
± 0.02 days/year or 47% of the original linear trend, and Willow Warbler: -0.12 ± 0.03 215 
days/year or 41% of the original linear trend; Table S14). For two more species, moderate 216 
trends towards advancement remained (Common Whitethroat: -0.07 ± 0.03 days/year or 39% 217 
of the original linear trend, and Spotted Flycatcher: -0.05 ± 0.02 days/year or 31% of the 218 
original linear trend; Table S14). The adjustment of spring migration phenology to weather 219 
conditions at the wintering and stopover grounds was, hence, only sufficient to fully explain 220 
the observed trends in spring migration phenology for two of the six species (i.e. 33%; 221 
Common Redstart and European Pied Flycatcher).   222 

Discussion 223 

As we did not work on individual birds, we cannot make any definite claims on whether the 224 
observed relationships between the weather variables and spring migration timing are due to  225 
phenotypic plasticity alone, or micro-evolutionary responses are also involved (10, 36). For 226 
each species, however, a high amount of the variation in migration phenology was explained 227 
by the weather conditions at only four or five winter or spring stopover areas (Table 1). This 228 
does seem to strongly suggest that phenotypic plasticity plays a key role in the recent 229 
advancements in spring migration phenology of long-distance migrants, including to a similar 230 
extent as for short-distance migrants (14). As such, while endogenous rhythms and 231 
photoperiod do play an irrefutable role in regulating spring migration (onset) in long-distance 232 
migrants (15), the rigidness in the real world, i.e. outside of laboratory settings, and relative 233 
importance compared to exogenous influences, i.e. conditions at the winter and stopover 234 
grounds, may have been consistently overestimated. Despite the high amount of explained 235 
variance in spring migration phenology by weather at the winter and spring stopover grounds 236 
across all six study species (Table 1), the observed advancements in spring migration were 237 
explained fully in only two (Table S14). Even if we were to attribute all of the explained 238 
variance in spring migration timing to phenotypic plasticity to weather at the wintering and 239 
stopover grounds, it would not suffice to fully explain the observed advancements. As such, 240 
again similar to observations in short-distance migrants (14), other adaptive processes such as 241 
micro-evolutionary processes (37, 38) or (winter or breeding) range changes (39) are, hence, 242 
likely also pushing towards advanced spring migration.    243 
The locations (and relative effect sizes) of the weather influences, i.e. a combination of sub-244 
Saharan likely wintering areas and Mediterranean and European spring stopover sites (Fig. 1 245 
and Fig. 2), confirm that much, perhaps most, of the spring migration advancement in long-246 
distance migrants occurs in response to weather along the migration route (17, 18, 21). 247 
Flexible responses to conditions at the wintering grounds, however, might also be very 248 
common: five out of the six species had at least one signal from a very likely wintering area. 249 
Depending on the species, their influence on the overall spring advancement may also play a 250 
substantial role, e.g. up to almost 50% for European Pied Flycatcher (Fig. 1; Table S10 and 251 
Table S12). 252 
In summary, our results strongly suggest that there have been mismatches in space, time, 253 
scale, and weather variable type between the variables of influence and the variables used in 254 
analyses. This has led to a consistent underestimation of the flexibility of long-distance 255 
migrant birds in spring migration onset from the wintering areas, as well as adjustment of 256 
progress along the migration route. As such, the suggested negative impacts of climate change 257 
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on long-distance migrants’ demographics due to their assumed inabilities of advancing spring 258 
departure from the wintering grounds (8, 13) has at least been based on false assumptions. 259 
While it is beyond doubt that climate change has already impacted the timing of several 260 
lifecycle events of migratory birds (1, 3, 4, 19, 26), strong evidence about how climate change 261 
is impacting migrant bird species demographics through changes in the timing of the 262 
migratory cycle, has yet to emerge (10). In fact, our results indicate that not only do, at least 263 
some, long-distance migrants strongly adjust their spring migration timing to prevailing 264 
weather conditions at the wintering and stopover locations, but also that favorable migratory 265 
conditions are now occurring more frequently (e.g. less days with headwind and more days 266 
with tailwinds, Fig. 1 and Table S12). Interestingly, a similar increase in favorable wind 267 
conditions has also been projected for future spring migration in North America over the 268 
current century (40). While many other potential pathways of climate change influences on 269 
bird population sizes have been suggested (4), current evidence still predominantly points 270 
towards (anthropogenic) land use change effects (6, 7).  271 

Materials and methods 272 

Spring migration passage data 273 
The trapping garden on the island of Helgoland, Germany (54° 11' N, 07° 53' E; sometimes 274 
also spelled as Heligoland) is a constant-effort bird ringing site. Since 1960, comparable 275 
efforts and standardized methods are used with daily catches in the trapping garden 276 
throughout the whole year. Barely any landbirds breed on Helgoland, especially not long-277 
distance migrants (21, 41, 42). Consequently, the birds used in this study to estimate spring 278 
migration phenology, are all birds in transit.  279 
We analyzed data from six trans-Saharan, i.e. long-distance, migrants. We used yearly mean 280 
spring passage date (MSPD) over the period 1960–2014 as a measure of migration phenology 281 
(Table S1). To minimize potential bias due to the use of the Gregorian calendar, we converted 282 
trapping dates to Winter Solstice-based dates (WSD) instead of day-of-the-year (43), but 283 
report dates throughout the paper as the approximate Gregorian calendar date. Yearly MSPD 284 
was calculated as the mean of the winter solstice-based trapping date (WSD) of all birds 285 
between WSD 51 and 166, i.e. February 20 to June 14 approximately. To allow comparison 286 
between species that are potentially subject to similar weather conditions prior to or during 287 
their migration, the species in all the (supplementary) tables and figures in the paper are 288 
ordered by mean spring passage date.  289 
Birds of a certain species that migrate through Helgoland stem from different breeding 290 
populations (44). As such, the measured MSPD at Helgoland will be influenced by changes in 291 
the spring phenology of each of these populations, which could potentially obscure the 292 
relation between the measured MSPD and the influencing weather conditions for each 293 
specific population. If the phenology of these different populations is, however, (a) related to 294 
changes in weather in their wintering or stopover areas, (b) the different populations show a 295 
relatively high winter and stopover-site fidelity, and (c) each population is represented by a 296 
sufficient amount of birds in the trappings, the fact that the observed MSPD is influenced by 297 
each of these populations should enable to link the observed MSPD to each of the different 298 
wintering or stopover sites (25). Birds from different wintering areas may also be influenced 299 
en route by the same weather conditions at a certain time and place, e.g. shared stopover areas 300 
or prior to crossing an ecological barrier. The wintering or stopover areas of a species also 301 
might have changed over the total analyzed time period (39, 45). Yet if these areas are 302 
maintained for a long enough subset of the total analyzed time period, or the shifts are not 303 
over large distances compared to the spatial resolution of the weather grids, it should be 304 
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possible to link the observed MSPD to all of the different wintering or stopover locations. As 305 
such, using migration passage data has both advantages and disadvantages compared to 306 
breeding area arrival data. 307 

Weather data 308 
We used spatiotemporal data of air temperature, precipitation, and wind from the NCEP 309 
Reanalysis I database (46, 47), which we acquired using the R package RNCEP (34, 48). The 310 
spatial grid covered an area from roughly 2° to 74° N and 19° W to 24° E, ranging from 311 
northern Scandinavia in the North to Cameroon in the South, and from Iceland and the Canary 312 
Islands in the West to Poland, Greece, Libya, and Chad in the East. The spatial resolution of a 313 
grid cell ranged from 1.875° to 3.75°, depending on the weather variable (Table S2). Ocean 314 
grid cells were masked from the analysis. For each day and land grid cell, we derived three 315 
variables from the NCEP database: mean daily air temperature, daily precipitation sum, and 316 
wind direction at midnight (UTC). We analyzed midnight winds only, and not winds during 317 
the day, as all species in our study are known to mainly migrate during the night. In the time 318 
window analyses, the wind direction data were used to calculate the number of nights for both 319 
winds originating from and in the direction of Helgoland within any given time window, by 320 
counting every day with a wind direction that fell between -45 and +45° of the angle between 321 
Helgoland and the center of the grid cell under analysis. Depending on the location of the grid 322 
cell relative to Helgoland, we then interpreted these to be head- or tailwinds. We chose to test 323 
both measures for wind effects on migration as both hypotheses, i.e. headwinds delay 324 
migration and tailwinds advance migration, represent different processes. 325 

Avoiding spurious correlations due to shared trends and temporal autocorrelation 326 
If two time series both show a temporal trend, correlating the two series without taking into 327 
account these shared trends will very often yield high, yet spurious, correlations (26, 49). 328 
Even after temporal trends are accounted for, any remaining autocorrelation in the time series 329 
may similarly produce spurious correlations (50). As such, we first determined whether a 330 
linear, quadratic, or cubic temporal trend was most appropriate for the MSPD time series of 331 
each species, by comparing the second-order Akaike Information Criterion (AICc) values (51) 332 
for linear, quadratic, and cubic trend models. If a quadratic or cubic temporal trend model had 333 
an AICc value that was more than two units lower than a linear trend model, we judged the 334 
higher-order model to be a better approximation of the trend over time. The identified trend 335 
model for each species was used as the base model (for comparison of reduction in AICc 336 
values by adding a weather variable) in the subsequent time window analyses.  337 
All species showed advancements in MSPD over the study period. Four of the six species had 338 
a linear trend, while for Willow Warbler and Common Whitethroat a quadratic and cubic 339 
trend, respectively, was most appropriate to account for trend (Table S3). We applied 340 
Augmented Dickey-Fuller tests (using the urca R package (52)) to verify that the chosen 341 
trends models had successfully reduced the MSPD time series to stationarity (Table S4). We 342 
checked and found no remaining autocorrelation in the residuals of the trend models with a 343 
Durbin-Watson test up to lag two (using the the car R package (53); Table S5). The observed 344 
non-linearity of spring migration phenology in two of the six species could be occurring 345 
through various mechanisms, e.g. non-linear trends of influencing weather variables, or 346 
varying influences (in space and time) working in different proportions on different 347 
populations of the birds migrating through Helgoland. Future meta-analyses across many 348 
species, populations and time could provide insights into such potential underlying 349 
mechanisms.  350 
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Finding the “weather variable – location – time window” combinations that influence 351 
spring migration phenology  352 
To identify the most likely weather effects on the MSPD at Helgoland of each of the six study 353 
species, we applied a recently developed spatiotemporal methodology (14, 31), which 354 
involves a sequence of two main chunks of analysis. The first step consists of performing a 355 
time window analysis on each grid cell for each of the weather variables of interest (i.e. 356 
temperature, precipitation, number of days with tail- or headwind, Table S2) to find the best 357 
performing time window. We searched all time windows of any size larger than 14 days and 358 
up to 365 (temperature and precipitation) or 183 days (wind variables) in the past from the 359 
reference date 1 July (Table S6 and S7). We did this using the ‘climwin’ R package (32, 33) 360 
by calculating AICc model values for all time windows, and comparing them to the AICc of 361 
the predefined temporal trend model for that species (Table S3). The time window showing 362 
the biggest AICc reduction was identified as the best-performing time window. To 363 
subsequently estimate the probability of obtaining a similar performing best time window due 364 
to chance alone, we then repeat the time window analysis for a number of randomizations of 365 
the weather data. Ideally, one would do this for a large number of randomizations, e.g. a 366 
thousand or more, to accurately approximate the actual ∆AICc distribution obtained by 367 
chance alone. Repeating such a high number of randomizations for multiple weather variables 368 
and over a large number of grid cells, however, quickly becomes an extremely resource-369 
intensive task. As such, we used the alternative probability statistic Pc of the ‘climwin’ R 370 
package which was developed specifically for such situations (32, 33). Using as little as five 371 
randomizations, the Pc statistic already provides a reliable estimation of whether a similar 372 
performing best time window is likely to be obtained by chance. Pc ranges from 0 to 1, with 373 
values closer to 0 expressing a higher probability that such a strong relation is unlikely 374 
obtained by chance. Using simulated datasets with a sample size of 47, and a cut-off value of 375 
Pc < 0.5 to decide on whether a signal is real, the false-positive and false-negative rate were 376 
both between 0.05 and 0.08 (32). To even further lower the amount of false positives, we 377 
lowered the Pc threshold to 0.3. Furthermore, our larger sample size (55 years compared to the 378 
47 in the simulated datasets) also further decreased both false-positive and false-negative 379 
rates. In summary, in the first step the correlation of the identified best time window of a grid 380 
cell’s weather with MSPD was considered to be unlikely due to chance when its Pc statistic 381 
was lower than 0.3. The time window analyses were performed on a per-species, per-weather-382 
variable, and per-grid-cell basis. For ease of reference, we summarized all of the settings and 383 
decision rules we used for the analyses in Table S6 and Table S7. Due to spatiotemporal 384 
autocorrelation, neighboring cells often had similar best-performing time windows with, 385 
sometimes only slightly, different ∆AICc values. This often resulted in spatial gradients in the 386 
∆AICc maps we obtained for each weather variable. We chose to select as the candidate 387 
signals, the cells with the regional ∆AICc maxima as the most representative of the potential 388 
relation between the weather variable for that area and the MSPD. This first step of the 389 
analysis resulted in an initial long-list of 310 candidate weather signals across all six species 390 
(38 to 67 candidates depending on the species; Table S8 and Fig. S1 to S4).  391 
The second main part of the analysis consists of a combination of several feature filtering and 392 
variable importance algorithms to narrow down the long-list of candidates to those that are 393 
most likely to be the most influential on the MSPD of each species. In this part of the 394 
analysis, we no longer included the temporal trend variables. Spurious correlations due to 395 
trend only have already been checked for, and are hence no longer an issue at this stage. 396 
Instead, we now actually want to assess how strong the relationships are with MSPD without 397 
accounting for temporal trends. First, we checked whether the weather variable still showed a 398 
strong correlation with MSPD when not accounting for temporal trends. This led to the 399 
removal of 50 candidate signals because the model without accounting for trends had an AICc 400 
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compared to an intercept-only model that was less than two units lower. Next, we checked for 401 
collinearity among the remaining candidate signals. We removed 35 signals that had a 402 
Pearson correlation > 0.7 with another candidate that had a bigger ∆AICc with an intercept-403 
only model. Subsequently, we removed 135 more signals using the boruta method (54) to 404 
reduce the maximum number of candidate signals per species to 15. Based on an ensemble 405 
variable importance analysis (51, 54–56) (Table S9), we ultimately extracted 26 signals across 406 
the six species that are very likely to be related to MSPD at Helgoland (Table S10, Fig. 1, and 407 
Fig. 2).  408 
Even though we tailored our approach towards avoiding false positives, we cannot exclude 409 
them entirely (31). Even when no relationship whatsoever exists between MSPD and weather 410 
at any location and time window, we still might identify some in the time window analysis 411 
step (32). While the variable filtering in the second part of the analysis likely removes many, 412 
if not most, of these false positives, some might still remain, and may ultimately be 413 
designated as (relatively) important influences. This means that even in the absence of any 414 
relationship whatsoever between a biological response variable (i.e. MSPD in our case) and 415 
weather at any location and time, the approach might still end up with a number of false final 416 
weather variables by chance only. To estimate the probability of obtaining such a final list of 417 
(false) weather influences that show a relationship with MSPD that, due to chance only, is 418 
similarly strong as those we obtained for each species (Table 1), we repeated the full 419 
spatiotemporal analysis on 200 randomized versions of each species’ MSPD. For each of 420 
these randomizations, we calculated the adjusted and predictive R2 values of both: (a) the 421 
model consisting of up to four variables identified as the most important influences, and (b) 422 
the best-performing model (in terms of AICc). Using the distributions of all of the resulting 423 
adjusted and predictive R2 values across each species’ randomizations (Table S11 and Fig. S5, 424 
we then estimated the probability of obtaining similarly performing final weather variables by 425 
chance only (i.e. 1 - the percentile of the R2 values of Table 1, in the R2 distributions of the 426 
randomizations). 427 

Contributions of each weather variable to the temporal trend in spring migration 428 
phenology of the species 429 
The influence of a weather variable on inter-annual variability in spring migration phenology 430 
will only result in a push towards advancement (or delay) in the temporal trend of the 431 
migration phenology if the weather variable itself is also changing over time to a certain 432 
degree in a certain direction. To calculate the combined effect of (1) the change in MSPD in 433 
response to the weather variable and (2) the change in the weather variable over time, and, 434 
hence, the contribution of each of the final weather variables’ influence to the temporal trend 435 
in MSPD, we used the chain rule (31, 57): 436 

𝑐𝑙𝑖𝑚𝑎𝑡𝑒 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠
𝑡𝑜 𝑡𝑟𝑒𝑛𝑑 𝑖𝑛 𝑀𝑆𝑃𝐷

 = ∑ (
𝜕𝑀𝑆𝑃𝐷

𝜕𝐶𝑙𝑖𝑚𝑎𝑡𝑒𝑖
 ×  

𝑑𝐶𝑙𝑖𝑚𝑎𝑡𝑒𝑖

𝑑𝑇𝑖𝑚𝑒
)

𝑛

𝑖=1

, 437 

 438 

where n is the total number of influencing weather variables for a given species. We used the 439 
regression coefficients of a multiple linear regression between MSPD and all of the identified 440 
final weather variables for each of the species separately to estimate the various 441 
𝜕𝑀𝑆𝑃𝐷 𝜕𝐶𝑙𝑖𝑚𝑎𝑡𝑒𝑖⁄ , and a simple linear regression between the respective weather variable 442 
and time, i.e. years, to estimate 𝑑𝐶𝑙𝑖𝑚𝑎𝑡𝑒𝑖 𝑑𝑇𝑖𝑚𝑒.⁄  Standard errors were calculated following 443 
error propagation rules (58). This approach by definition ignores any other (e.g. non-climatic) 444 
factors that might possibly affect changes in MSPD over time. 445 
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While weather variable effects on inter-annual variation in MSPD consist of a mix of positive 446 
and negative relationships, their contributions to the temporal trend in MSPD has been 447 
consistently towards advancements (Fig. 1 and Table S12). In other words, throughout the 448 
course of the 55-year study period, weather conditions favorable for migration progress have 449 
been occurring earlier (e.g. temperature) or more frequently (e.g. tailwinds), and conditions 450 
unfavorable for migration progress have been occurring less frequently (e.g. precipitation and 451 
headwinds).  452 

Relative importance of the weather variable types in terms of effect and temporal trend 453 
contributions 454 
We calculated the relative overall importance across all species of the three different weather 455 
variable types, i.e. temperature, precipitation, and wind, on the inter-annual fluctuations in 456 
MSPD at Helgoland by summing their respective mean relative variable importance values. 457 
We, furthermore, also calculated the importance of each climate variable in terms of relative 458 
contributions to the temporal trends in MSPD over the past decades by summing the absolute 459 
values of the trend contributions for each climate variable, divided by the total sum of the 460 
trend contributions (Table S13).  461 

Assessing remaining linear trends in MSPD after accounting for the identified weather 462 
signals 463 
After identifying the weather variables influencing and determining their effects on MSPD, 464 
we checked whether their combined effect completely explained the observed trends in 465 
MSPD. We did this by comparing the AICc of the model including all influencing weather 466 
variables for that species with the model that additionally included a linear temporal trend, i.e. 467 
a ‘year’ variable.  468 

Data and code availability 469 

All R code and the phenology dataset, necessary to replicate the results of this study can be 470 
accessed at: https://doi.org/10.5281/zenodo.3629178.  471 
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Figures 614 

 615 
Fig. 1. Location, timing, and resulting change in spring phenology over the years 1960-616 
2014 of the identified most important weather variables that are likely to influence mean 617 
spring passage at Helgoland for (a) European Pied Flycatcher, (b) Common Redstart, (c) 618 
Willow Warbler, (d) Common Whitethroat, (e) Garden Warbler, and (f) Spotted Flycatcher. 619 
Marked locations may represent smaller or larger areas of influence than what is marked in 620 
the map (see text). T: temperature; P: precipitation; HW: headwind; TW: tailwind. The grey 621 
background triangles in the upper right timing figures, represent the 5th and 95th percentile of 622 
all birds passing at Helgoland over the entire study period 1960-2014. The resulting change 623 
numbers in the maps are the number of days migration changed over the whole study period 624 
due to that weather influence, calculated using the chain rule (see Materials and Methods 625 
section, and Table S12). Helgoland is marked with a star. (Bird) Illustrations reproduced by 626 
permission of Lynx Edicions. 627 



16 
 

 628 
Fig. 2. Comparison of relative weather variable importance in terms of the effect on 629 
inter-annual variation of spring migration phenology (a, b), and their contributions to 630 
the advancement in spring passage over the study period 1960-2014 (c, d). (a) Locations 631 
and relative effect sizes, based on the standardized regression coefficient using model 632 
averaging (see Methods), of the weather variables influences on inter-annual variation in 633 
mean spring passage dates; (b) Overall weather variable type importance across all species, in 634 
terms of explaining inter-annual variability in spring migration phenology; (c) Overall 635 
weather variable type importance across all species, in terms of contributions to the long-636 
term advancements in spring migration passage; (d) Locations and relative sizes of the trend 637 
contributions of each weather variable to the advancement in spring migration passage. Point 638 
sizes in (a) and (d) are on a relative scale stretching from the respective overall minimum to 639 
the maximum across all species. The location of Helgoland is marked with a star.  640 
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Tables 641 
Table 1 Explained variance in spring migration phenology and predictive performance using a 642 
linear model with all of the final identified weather signals for each species (see Fig. 1), but not 643 
the temporal trend variables (Table S3). Adjusted R2 is defined as in (35). Predictive R2 was 644 
calculated leave-one-year-out. 645 

Species Adjusted R² Predictive R² 
European Pied Flycatcher 0.86 0.83 
Common Redstart 0.76 0.71 
Willow Warbler 0.80 0.78 
Common Whitethroat 0.72 0.69 
Garden Warbler 0.80 0.77 
Spotted Flycatcher 0.76 0.73 

 646 


