Software Open Access

Gratopy 0.1

Kristian Bredies; Richard Huber


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.5235563</identifier>
  <creators>
    <creator>
      <creatorName>Kristian Bredies</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-7140-043X</nameIdentifier>
      <affiliation>University of Graz</affiliation>
    </creator>
    <creator>
      <creatorName>Richard Huber</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1743-6786</nameIdentifier>
      <affiliation>University of Graz</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Gratopy 0.1</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <subjects>
    <subject>Radon transform</subject>
    <subject>fanbeam transform</subject>
    <subject>pixel-driven projection methods</subject>
    <subject>computed tomography</subject>
    <subject>image reconstruction</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2021-08-23</date>
  </dates>
  <resourceType resourceTypeGeneral="Software"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5235563</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsSupplementTo">https://github.com/kbredies/gratopy/tree/v0.1.0</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.5221442</relatedIdentifier>
  </relatedIdentifiers>
  <version>v0.1.0</version>
  <rightsList>
    <rights rightsURI="https://opensource.org/licenses/GPL-3.0">GNU General Public License v3.0 or later</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The gratopy (&lt;strong&gt;Gr&lt;/strong&gt;az &lt;strong&gt;a&lt;/strong&gt;ccelerated &lt;strong&gt;to&lt;/strong&gt;mographic projections for &lt;strong&gt;Py&lt;/strong&gt;thon) toolbox is a Python3 software package for the efficient and high-quality computation of Radon transforms, fanbeam transforms as well as the associated backprojections. The included operators are based on pixel-driven projection methods which were shown to possess &lt;a href="https://epubs.siam.org/doi/abs/10.1137/20M1326635"&gt;favorable approximation properties&lt;/a&gt;. The toolbox offers a powerful parallel OpenCL/GPU implementation which admits high execution speed and allows for seamless integration into &lt;a href="https://documen.tician.de/pyopencl/"&gt;PyOpenCL&lt;/a&gt;. Gratopy can efficiently be combined with other PyOpenCL code and is well-suited for the development of iterative tomographic reconstruction approaches, in particular, for those involving optimization algorithms.&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Highlights&lt;/strong&gt;&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;Easy-to-use tomographic projection toolbox.&lt;/li&gt;
	&lt;li&gt;High-quality 2D projection operators.&lt;/li&gt;
	&lt;li&gt;Fast projection due to custom OpenCL/GPU implementation.&lt;/li&gt;
	&lt;li&gt;Seamless integration into PyOpenCL.&lt;/li&gt;
	&lt;li&gt;Basic iterative reconstruction schemes included (Landweber, CG, total variation).&lt;/li&gt;
	&lt;li&gt;Comprehensive documentation, tests and example code.&lt;/li&gt;
&lt;/ul&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>Austrian Science Fund</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100002428</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/FWF/Einzelprojekte/P+29192/">P 29192</awardNumber>
      <awardTitle>Regularization Graphs for Variational Imaging</awardTitle>
    </fundingReference>
    <fundingReference>
      <funderName>Austrian Science Fund</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100002428</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/FWF/Doktoratskollegs+%28DKs%29/W+1244/">W 1244</awardNumber>
      <awardTitle>Partial Differential Equations - Modelling, Analysis, Numerical Methods and Optimization</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
151
10
views
downloads
All versions This version
Views 15192
Downloads 105
Data volume 13.3 MB6.8 MB
Unique views 9976
Unique downloads 105

Share

Cite as