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 The acute shortage of trained and experienced sonographers causes the 

detection of congenital heart defects (CHDs) extremely difficult. In order to 

minimize this difficulty, an accurate fetal heart segmentation to the early 

location of such structural heart abnormalities prior to delivery is essential. 

However, the segmentation process is not an easy task due to the small size 

of the fetal heart structure. Moreover, the manual task for identifying the 

standard cardiac planes, primarily based on a four-chamber view, requires a 

well-trained clinician and experience. In this paper, a CNN method using U-

Net architecture was proposed to automate fetal cardiac standard planes 

segmentation from ultrasound images. A total of 519 fetal cardiac images 

was obtained from three videos. All data is divided into training and testing 

data. The testing data consist of 106 slices of the four-chamber segmentation 

tasks, i.e. atrial septal defect (ASD), ventricular septal defect (VSD), and 

normal. The segmentation of the post-processing method is needed to 

enhanced the segmentation result. In this paper, a combination technique 

with U-Net and Otsu thresholding gives the best performances with 99.48%-

pixel accuracy, 96.73% mean accuracy, 94.92% mean intersection over 

union, and 0.21% segmentation error. In the future, the implementation of 

Deep Learning in the study of CHDs holds significant potential for 

identifying novel CHDs in heterogeneous fetal hearts. 
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1. INTRODUCTION  

In developing countries such as India and Pakistan, about 1% of several newborn babies are affected 

by congenital heart defects (CHDs). The number of newborn babies with CHD is increasing as reported in 

[1], wherein 2011, the ratio of CHD sufferers per 1000 births was 9.1%. The CHDs is a heart disease that has 

been detected as early as the first trimester of intra-uterine life [2]. Such defects are characterized by 

abnormalities in the heart structure, with varying degrees from mild to severe. CHDs still dominate the 

problem of heart disease in infants and children. With the incidence of CHDs at around 1% of the infant in 

Indonesia and every year, there will be about 45,000 babies with CHDs ranging from mild to severe 

abnormalities diagnosis, including complex conditions [3]. A newborn with undiagnosed heart disease will 

be discharged to the home, and it is only a matter of time to get a worse condition or even dies at home. 

Diagnosis of CHDs problems in the early stage of pregnancy allows for prompt, lifesaving treatment. Fetal 

diagnosis depends on observations by experienced clinicians using ultrasound imaging [4]. Unfortunately, 

https://creativecommons.org/licenses/by-sa/4.0/
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due to very few experts in the field of CHDs, it is common for an infant to be born without having an existing 

heart problem diagnosed [5]. Undetected CHDs are a serious problem: when an infant has a serious heart 

problem, often the outcome depends on an accurate diagnosis at the time of birth. 

Newborn children with severe heart disease who are not analyzed before birth could in the first 

month or get more severely ill while still in the maternity ward. Nonetheless, treating intrinsic heart within 

seven days after birth mainly improves the prognosis [6]. In this way, numerous endeavors have been made 

to build up an innovation that makes fast and exact conclusions conceivable. A precise fetal heart 

segmentation is basic to localizing structural heart abnormalities before birth [7]. The difficulty increase due 

to the small size of the fetal heart structure and depressions, particularly the flimsy chamber boundaries in the 

atrial septum, the membranous section of the ventricular septum, and the valvular leaflets [8]. 

A machine learning (ML) algorithm provides the ability to learn the medical image data based on 

statistical techniques [9], [10]. Using medical data allows ML to improve its performance on a specific task 

progressively. Furthermore, the ML algorithm allows a diagnostic system to detect disease faster and more 

accurately than a human being [11]. Unfortunately, this process requires more information on normal and 

abnormal subjects to recognize a particular disease [12]. The problem is that heart defects in infants are 

infrequent, so there is a lack of available information to train the ML algorithm. The same issue applies to 

congenital heart disease: the problems are rare (there were no complete data sets), so predictions can only be 

made using relatively small and incomplete data sets [13]. According to this limitation, a diagnosis based on 

the ML-based method was insufficient in accuracy and does not recommend being used clinically [14], [15]. 

Adding more ultrasound images to the system can help the ML learn better to improve its screening accuracy 

[16]. The study of CHDs has been primarily conducted with handcrafted features, referred to as ‘shallow 

learning’ [17], [18]. Maraci et al. [18] applied dynamic texture modelling with handcrafted, rotation-invariant 

features to detect the fetal heartbeat. Bridge, Loannou, and Noble [17] proposed a framework based on 

sequential bayesian filtering (SBF) to predict visibility, position, and orientation of a fetal heart in 

consecutive frames. However, shallow architecture cannot learn the essential features directly from the data; 

because it requires feature engineering [19], [15]. 

One of the ML algorithms, called deep learning (DL) algorithm, can work using less data [20]-[22]. 

Using the augmented strategy, the image can be expanded and can be used as learning data as well [23]. The 

DL algorithm is vastly improving medical diagnoses speed and accuracy [12], [24]. In general, fetal heart 

diagnosis experts seek to find whether certain parts of the heart, such as valves and blood vessels, are in 

incorrect positions by comparing normal and abnormal fetal heart images. By using DL, such a process is 

similar to the ‘object detection’ technique, which allows DL to distinguish position and classify multiple 

objects appearing in images [25]-[28]. Using the ML approach, it is possible to develop an automatic 

diagnostic system to detect certain diseases faster than humans [12], [29]. Since there is limited research in 

automated fetal heart segmentation according to the aforementioned literature review study. This study 

proposed a DL algorithm to detect abnormalities in fetal hearts based on US images. By providing an 

accurate detection, an appropriate treatment can be conducted as soon as possible. The DL with automatic 

feature learning ability indicates an efficient method for fetal pattern recognition. Baumgartner et al. [26] 

employed a fully convolutional network to detect 12 standard planes and localize the respective fetal 

anatomy. Gao, Maraci, and Noble [27] presented a transfer learning-based design to study the transferability 

of features learned from natural images to ultrasound image object recognition. Chen et al. [28] proposed a 

hybrid model composed of ConvNets and recurrent neural networks (RNN) to explore spatiotemporal 

learning from contextual temporal information. However, the cardiac fetal data set is difficult to obtain, and it 

is lack of large publicly-available. Therefore, the use of the 3D Ultrasonographic (US) video of from the 

internet have becomes the data resource in [30]-[32]. Processing the US video to provide a reliable data set is 

a challenging task because the data is quite unstructured with varying dimensions. Hence, in this paper, the 

preliminary study of Deep Learning with convolutional neural network-based U-Net architecture is proposed 

to automated semantic segmentation the four-chamber view of fetal cardiac image with unstructured and 

varying of dimensional data. 

 

 

2. SEGMENTATION PROCESS 

There are three stages in the segmentation process: (1) data collection and preparation, (2) 

automated segmentation by using CNNs, and (3) Post-processing and calculating segmentation 

performances. A detail of these processes is presented in the following subsections: 

 

2.1.  Data collection and preparation 

The data were obtained in MP4 format from three maternity in the gestational age range of 18-23 

weeks. The raw data collected in terms of normal [7], ASD [33] and VSD [34]. The MP4 format is converted 
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into frames/slices of the image. All data generated about 519 images in total with different dimensions. The 

dimensions of ASD, VSD, and Normal data were 1280x720, 640x480, and 640x480. Before the ground-truth 

data were obtained, we performed the data pre-processing stage, including cropping and resizing process. 

The overall steps of data preparation stages showed in Figure 1. 

 

 

 
 

Figure 1. Data preparation stages 

 

 

All images must be cropped to eliminate the noise from the frame. After that, the cropping process is 

done to reduce the size of the image dimensions to 400x300. Once the pre-processed data has been obtained, 

the next step is to create ground truth for all images. The purposes of creating ground truth are to use it as 

annotated data in training phases and to measure segmentation results. Figure 2 is the illustration of pre-

processing steps and the ground truth process. 

 

 

  
(a) (b) 

 

Figure 2. These figures are, (a) pre-processed data, (b) ground truth result 

 

 

2.2.  Automated semantic segmentation 

The purpose of semantic segmentation is to find the specific characteristics in a cardiac fetal image 

and separate the various objects to become objects with specific characteristics. In this study, convolutional 

neural networks (CNNs) with U-Net architecture was proposed for cardiac fetal segmentation [35]. The  

U-Net architecture has been proven to carry out semantic segmentation processes in medical data sets, and it 

has been used successfully in brain tumour segmentation [36] and cell segmentation [37]. This architecture is 

an end-to-end fully convolutional network type architecture containing a convolution layer without a fully 

connected (dense) layer. Therefore, such architecture can accept various images with different sizes.  

In general, CNN-based U-Net architecture has two layers: the convolution layer and the pooling 

layer. The convolution layer processes the value of a matrix (kernel or filter) and changes it based on the 

filter's values. The convolution process is defined using (1): 

 

𝐺[𝑚, 𝑛] = (𝑓 ∗ ℎ)[𝑚, 𝑛] =  ∑𝑗 ∑𝑘 ℎ[𝑗, 𝑘]𝑓[𝑚 − 𝑗, 𝑛 − 𝑘] (1) 

 

where [𝑚, 𝑛] is the input image, and 𝑓  is a filter. The process of convolution operation is calculated by using 

(2): 

 

𝑛𝑜𝑢𝑡 =  [
𝑛𝑖𝑛+2𝑝−𝑘

𝑠
] + 1 (2) 

 

where 𝑛𝑖𝑛 is the input features, 𝑛𝑜𝑢𝑡 the output features, 𝑘 a convolution kernel size, 𝑝 a convolution padding 

size, and 𝑠 a convolution stride size. The U-Net model uses max pooling on the pooling layer. This pooling 

function reduces the size of the feature map so that there are only a few parameters in the network. The max-

pooling process selects the maximum pixel value from the feature map and then obtains the collected feature 

map. In the pooling process, the critical point is that the image size resolution is reduced because high-



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 10, No. 4, August 2021 :  1987 – 1996 

1990 

resolution images are converted to low-resolution images. The U-Net architecture is divided into two parts, 

the encoder/contraction path and the decoder/symmetric expansion path, as presented in Figure 3. 

The function of contraction path or encoder is to capture the context contained in the image. In the 

first part, an image with dimension 256x256x1 will be sampled to produce the specified context. The 

contraction path consists of several convolutions and max-pooling layers, while the size of the convolution 

kernel is 3x3. A non-linearity ReLU operation always follows in every convolution operation. Besides, there 

are pooling operations measuring 2x2 with a shift of 2 times. Finally, this process produces 32x32x256 

images. The second part is the symmetric expanding path or decoder to localize objects using convolution 

transformations. The symmetric expanding path stage contains the up-sampling operation of the results of the 

contraction path. In this operation, the image size will increase gradually, and the depth of the image will 

gradually decrease from 32x32x256 to 256x256x1. The symmetric expanding path process restores 

information generated from the contraction path process by slowly performing up-sampling stages. The skip-

connection process is carried out at each symmetric expanding path layer to produce better object 

segmentation results. Such a process is done by combining the convolution layers output in the symmetric 

expanding path, which is transformed by the contraction path stage's feature-map at the same level. 
 

 

 

 
 

Figure 3. U-Net architecture parts 

 

 

2.3. Post-processing and performance measurement 

In this study, we carried out several post-processing methods to enhance the segmentation result. In 

the post-processing phase, each image pixel value becomes 0 for the background and 1 for the foreground. 

This process improves the quality of segmentation results in terms of accuracy. The post-processing methods 

used are global thresholding (fixed thresholding; threshold=127), Otsu thresholding [38], and local 

thresholding (Gaussian thresholding [39]). These post-processing methods are compared to obtain the most 

optimal method based on four-chamber segmentation. After the post-processing stage, the testing phase is 

performed. The result is validated using pixel accuracy (PA), mean accuracy (MA), and mean intersection 

over union (MIoU) [40]. The PA metric calculates the ratio between the number of pixels classified correctly 

and the total number of pixels. To illustrate such a metric performance, the confusion matrix model is used in 

the case of classification. The pixels accuracy is shown in (3): 
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where, Ncls is number of class and Nxy is number of pixels in x class that were predicted as y class. The value 

of the confusion matrix illustrated false positives (Nxy), false negatives (Nyx), true positives (Nxx), and true 

negatives (Nyy). Mean accuracy (MA) is a metric for calculating the accuracy ratio for each class and the 

average value based on all classes (Ncls). MA is described in (4). 
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The mean intersection over union (MIoU) is also known as the Jaccard index. This is a metric used 

to calculate the intersection percentage between the labelled mask and the predicted output. Intersection over 

Union is counted per class, and the values of all classes are averaged. The IoU metric is highly effective and 

very straightforward. MIoU is presented in (5): 
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3. RESULTS AND ANALYSIS 

In this study, we split the data into two groups of datasets, namely training and testing, with a 

proportion of 80 and 20, respectively. Train set consist of 413 images is used to train the U-Net architecture, 

while the test set consist of 106 images is used to measure the segmentation performance. We also tested 

several post-processing methods (fix threshold, Otsu and Gaussian) to improve the segmentation result.  

U-Net original architecture with sigmoid activation function in the last layer and mean squared error loss 

function is used to create a baseline model. Table 1 present the segmentation performances of the original 

model.  

 

 

Table 1. Performance result of baseline model 
Metrics Without post-processing Fix threshold Otsu Gaussian 

Pixel Accuracy [%] 80.266 94.919 93.992 12.495 

Mean IoU [%] 43.660 73.458 74.007 6.645 
Mean Accuracy [%] 43.743 81.391 87.692 43.385 

 

 

From Table 1 it can infer that fix and Otsu thresholding methods increased the segmentation 

performance. Unfortunately, gaussian thresholding was failed due to its characteristic for determining 

threshold value. Fix and Otsu thresholding used one global value as a threshold, while the gaussian threshold 

determined threshold values based on a small region around it. The gaussian threshold enabled different 

threshold for different regions, which gives better results for image with varying illumination. Figure 4 shows 

the segmentation results of the baseline model. 

 

 

    

    

    

(a) (b) (c) (d) 

 

Figure 4. Segmentation with result normal, ASD, and VSD, (a) no post-processing, (b) fix thresholding,  

(c) Otsu thresholding, (d) Gaussian thresholding 

 

 

In order to get the best parameters, several tuning in U-Net hyperparameter was done. We compared 

the segmentation result using binary cross-entropy as loss function and change numbers of convolutional 

filter in each layer. The size of convolution filters was down and up sample. Typically, U-Net architecture 
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has sets of 64, 128, 256, 512, and 1024 convolutional filters in each encoder and decoder path. The 

comparison results of hyperparameter tuning and baseline model of U-Net architecture illustrated in Table 2. 
 
 

Table 2. U-Net hyperparameter comparison 
Model Metrics Fix threshold Otsu 

U-Net Baseline model (sigmoid and mean squared error) 

(64, 128, 256, 512, 1024, 512, 256, 128, 64) 

Pixel Accuracy [%] 94.91 93.99 
Mean IoU [%] 73.45 74.00 

Mean Accuracy [%] 81.39 87.69 

U-Net with sigmoid and binary cross-entropy 

(64, 128, 256, 512, 1024, 512, 256, 128, 64) 

Pixel Accuracy [%] 99.48 99.48 
Mean IoU [%] 94.82 94.92 

Mean Accuracy [%] 96.50 96.73 

U-Net with sigmoid and binary cross-entropy (Down sampled) 

(8,16,32,64128,64,32,16,8) 

Pixel Accuracy [%] 98.75 98.55 
Mean IoU [%] 87.04 87.71 

Mean Accuracy [%] 90.22 96.42 

U-Net with sigmoid and binary cross-entropy (Down sampled) 

(16,32,64,128,256,128,64,32,16) 

Pixel Accuracy [%] 99.32 99.33 
Mean IoU [%] 92.82 93.03 

Mean Accuracy [%] 95.22 95.92 

U-Net with sigmoid and binary cross-entropy (Down sampled) 

(32,64,128,256,512,256,128,64,32) 

Pixel Accuracy [%] 99.44 99.44 
Mean IoU [%] 94.13 94.20 

Mean Accuracy [%] 96.44 96.73 

U-Net with sigmoid and binary cross-entropy (Up sampled) 

(128,256,512,1024,2064,1024,512,256,128) 

Pixel Accuracy [%] 99.44 99.44 
Mean IoU [%] 94.20 94.27 

Mean Accuracy [%] 96.46 96.73 

 
 

Table 2 shows that binary cross-entropy loss function increases the performance metrics. The most 

noticeable escalation is the average IOU, which increased by more than 20% and the average accuracy 

increasing by about 15%. Moreover, the effect of filters numbers on the convolution layer can also be seen 

from the experimental results. The optimal value for convolutional filter was 64, 128, 256, 512 and 1024, 

both in encoder and decoder path with 99.48% of Pixel Accuracy, 94.92% of Mean IoU, and 96.73 of Mean 

Accuracy. In addition, Fix and Otsu threshold as post-processing methods only gives a slight difference for 

the evaluation metrics. Figure 5 illustrates the best model segmentation result, U-Net with 64, 128, 256, 512 

and 1024 convolutional filter and Otsu thresholding. Figure 6 shows graphs of the accuracy and loss in the 

training process. It can be seen that, the loss curve decreased to zero, and the accuracy curve increased to 1.0. 

Furthermore, there is no gap between the training and validation data curves which indicates that there is no 

overfitting problem in the proposed architecture. 
 

 

   
(a) (b) (c) 

  

Figure 5. Segmentation result of best model, (a) ASD, (b) normal, (c) VSD 

 

 

In Table 3, the proposed architecture is compared with other segmentation methods. We have found 

limited segmentation methods using DL for fetal cardiac studies. A number of previous studies calculate the 

segmentation performance using conventional methods without the learning process. Our proposed model 

produced 99.48% of pixel accuracy, 94.92% of mean IoU, and 96.73 of mean accuracy. Moreover, the error 

rate only produced about 0.21%. The best model gives satisfactory result compared to others even with a 

very limited data.  
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(a) (b) 

 

Figure 6. These figures are, (a) accuracy from the best model, (b) loss from the best model 
 

 

Table 3. The proposed model compared with other methods for fetal cardiac segmentation 
Researchers Method Number of data Metric Value 

Fetal left ventricle [41] 
Dynamic Convolutional Neural 

Networks 
8000 

Hausdorff Distance 

(HD) 

Mean Absolute 
Distance (MAD) 

Dice coefficient 

HD (mm): 

1.2648 

MAD (mm): 
0.2016 

Dice: 94.5% 

Characterization of the fetal heart [42] 
Fully Convolutional Neural 
Networks -VGG 16 stride 

2178 images Error rate 23.48% 

Apical Four-Chamber View 

Segmentation [43] 
Cascaded U-nets (CU-net) 1712 images Pixel Accuracy 92.9% 

Cascaded CNN for fetal apical 4 

chamber view segmentation [44] 

DW-Net (Cascaded 

convolutional neuralnetwork) 
895 images Pixel Accuracy 93.33 

Our Proposed Method 

Convolutional Neural 

Networks-U-Net and Otsu 
threshold 

519 images 

Pixel Accuracy 99.48% 
Mean IoU 94.92% 

Mean Accuracy 96.73% 

Error rate 0.21% 

 

 

4. CONCLUSION 

The diagnosis of CHDs in the fetus is a challenging task. This is due to the small size of the fetal 

cardiac structure and the lack of data availability. An ultrasonography video observation from three maternity 

in the gestational age range of 18-23 weeks in format MP4 files used as the data set with cardiologist 

validation. However, the raw data need to be pre-processed due to the unstructured dimension and the low 

signal-to-noise ratio. Therefore, the limited data and the fetal heart small structure are impediments to a deep 

investigation. A deep learning approach is proposed to help experts in diagnosing CHDs. The CNN-based U-

Net architecture helped the novice and expert sonographers identify the fetal cardiac standard planes. The U-

Net architecture selected the base architecture combined with several post-processing methods. The network 

was trained and tested on a large number of data sets acquired. From the preliminary results, the 

segmentation performances based on PA, MA, and MIoU is observed. U-Net combined with the global 

thresholding approach (fix and Otsu methods) produces the best performance. On the other hand, local 

thresholding gives unsatisfactory results due to its ability to have a different threshold for different regions. 

From our preliminary results, we observe that, based on performance metrics such as accuracy and error, our 

network produced a comparable result with state-of-the-art techniques with 99.48% PA, 96.73% MA, 

94.92% MIoU, and 0.21 segmentation error. As part of future work, we plan to test the network performance 

on a larger data set direct from several fetal subjects. Furthermore, we will try to detect and classify structural 

anomalies in the fetal heart. Based on the retrieved slices, classify the volume as normal or abnormal for 

various types of CHDs and extend the work to extract standard planes associated with other anatomical 

structures. 
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