Dataset Open Access
Koppa, Akash;
Rains, Dominik;
Hulsman, Petra;
Miralles, Diego G.
{ "inLanguage": { "alternateName": "eng", "@type": "Language", "name": "English" }, "description": "<p>This repository contains the codes and datasets used in the research article "A Deep Learning-Based Hybrid Model of Global Terrestrial Evaporation".</p>\n\n<p>The repository contains the following files: 1) Codes - contains scripts used for training the deep learning models used in the study, and for creating the figures in the article. 2) Input - contains all the processed input used for training the deep learning models and the datasets used for creating the figures in the article. 3) Output - contains the final deep learning models and the outputs (evaporation and transpiration stress factor) outputs from the hybrid model developed in the study.</p>\n\n<p>Formats: All scripts are in the programming language Python. The datasets are in HDF5 and NetCDF formats</p>", "license": "https://creativecommons.org/licenses/by/4.0/legalcode", "creator": [ { "affiliation": "Hydro-Climate Extremes Lab (H-CEL), Ghent University", "@id": "https://orcid.org/0000-0001-5671-0878", "@type": "Person", "name": "Koppa, Akash" }, { "affiliation": "Hydro-Climate Extremes Lab (H-CEL), Ghent University", "@id": "https://orcid.org/0000-0003-0768-4209", "@type": "Person", "name": "Rains, Dominik" }, { "affiliation": "Hydro-Climate Extremes Lab (H-CEL), Ghent University", "@id": "https://orcid.org/0000-0002-9764-3357", "@type": "Person", "name": "Hulsman, Petra" }, { "affiliation": "Hydro-Climate Extremes Lab (H-CEL), Ghent University", "@id": "https://orcid.org/0000-0001-6186-5751", "@type": "Person", "name": "Miralles, Diego G." } ], "url": "https://zenodo.org/record/5220753", "datePublished": "2021-08-19", "keywords": [ "Deep learning", "Hybrid Modeling", "Evaporation", "Evaporative Stress", "Transpiration", "GLEAM", "Machine Learning", "Earth System Modeling" ], "@context": "https://schema.org/", "distribution": [ { "contentUrl": "https://zenodo.org/api/files/e47d9264-c9ef-4caa-8a99-0854f6e637b8/code_koppa_et_al_hybrid_model.zip", "encodingFormat": "zip", "@type": "DataDownload" }, { "contentUrl": "https://zenodo.org/api/files/e47d9264-c9ef-4caa-8a99-0854f6e637b8/input_koppa_et_al_hybrid_model.zip", "encodingFormat": "zip", "@type": "DataDownload" }, { "contentUrl": "https://zenodo.org/api/files/e47d9264-c9ef-4caa-8a99-0854f6e637b8/output_koppa_et_al_hybrid_model.zip", "encodingFormat": "zip", "@type": "DataDownload" } ], "identifier": "https://doi.org/10.5281/zenodo.5220753", "@id": "https://doi.org/10.5281/zenodo.5220753", "@type": "Dataset", "name": "A Deep Learning-Based Hybrid Model of Global Terrestrial Evaporation" }
All versions | This version | |
---|---|---|
Views | 917 | 509 |
Downloads | 6,466 | 5,969 |
Data volume | 181.2 TB | 169.5 TB |
Unique views | 780 | 464 |
Unique downloads | 255 | 125 |