There is a newer version of this record available.

Dataset Open Access

A Deep Learning-Based Hybrid Model of Global Terrestrial Evaporation

Koppa, Akash; Rains, Dominik; Hulsman, Petra; Miralles, Diego G.


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/e47d9264-c9ef-4caa-8a99-0854f6e637b8/code_koppa_et_al_hybrid_model.zip"
      }, 
      "checksum": "md5:ef1307b7432000c8c04d8c88705e4112", 
      "bucket": "e47d9264-c9ef-4caa-8a99-0854f6e637b8", 
      "key": "code_koppa_et_al_hybrid_model.zip", 
      "type": "zip", 
      "size": 30479
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/e47d9264-c9ef-4caa-8a99-0854f6e637b8/input_koppa_et_al_hybrid_model.zip"
      }, 
      "checksum": "md5:7886621409904deae90fdf4a3dfb22e6", 
      "bucket": "e47d9264-c9ef-4caa-8a99-0854f6e637b8", 
      "key": "input_koppa_et_al_hybrid_model.zip", 
      "type": "zip", 
      "size": 1487487925
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/e47d9264-c9ef-4caa-8a99-0854f6e637b8/output_koppa_et_al_hybrid_model.zip"
      }, 
      "checksum": "md5:0b1432afdb97fdc16951c19fad92d8f0", 
      "bucket": "e47d9264-c9ef-4caa-8a99-0854f6e637b8", 
      "key": "output_koppa_et_al_hybrid_model.zip", 
      "type": "zip", 
      "size": 28798408590
    }
  ], 
  "owners": [
    248830
  ], 
  "doi": "10.5281/zenodo.5220753", 
  "stats": {
    "version_unique_downloads": 255.0, 
    "unique_views": 464.0, 
    "views": 509.0, 
    "version_views": 917.0, 
    "unique_downloads": 125.0, 
    "version_unique_views": 780.0, 
    "volume": 169476076281666.0, 
    "version_downloads": 6466.0, 
    "downloads": 5969.0, 
    "version_volume": 181153064129839.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.5220753", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.5220752", 
    "bucket": "https://zenodo.org/api/files/e47d9264-c9ef-4caa-8a99-0854f6e637b8", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.5220752.svg", 
    "html": "https://zenodo.org/record/5220753", 
    "latest_html": "https://zenodo.org/record/5886608", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.5220753.svg", 
    "latest": "https://zenodo.org/api/records/5886608"
  }, 
  "conceptdoi": "10.5281/zenodo.5220752", 
  "created": "2021-08-19T11:00:10.638601+00:00", 
  "updated": "2022-01-21T11:08:26.999012+00:00", 
  "conceptrecid": "5220752", 
  "revision": 5, 
  "id": 5220753, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.5220753", 
    "description": "<p>This repository contains the codes and datasets used in the research article &quot;A Deep Learning-Based Hybrid Model of Global Terrestrial Evaporation&quot;.</p>\n\n<p>The repository contains the following files: 1) Codes - contains scripts used for training the deep learning models used in the study, and for creating the figures in the article. 2) Input - contains all the processed input used for training the deep learning models and the datasets used for creating the figures in the article. 3) Output - contains the final deep learning models and the outputs (evaporation and transpiration stress factor) outputs from the hybrid model developed in the study.</p>\n\n<p>Formats: All scripts are in the programming language Python. The datasets are in HDF5 and NetCDF formats</p>", 
    "language": "eng", 
    "title": "A Deep Learning-Based Hybrid Model of Global Terrestrial Evaporation", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "relations": {
      "version": [
        {
          "count": 2, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "5220752"
          }, 
          "is_last": false, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "5886608"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "869550", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::869550"
        }, 
        "title": "DOWN2EARTH: Translation of climate information into multilevel decision support for social adaptation, policy development, and resilience to water scarcity in the Horn of Africa Drylands", 
        "acronym": "DOWN2EARTH", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "715254", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::715254"
        }, 
        "title": "Do droughts self-propagate and self-intensify?", 
        "acronym": "DRY-2-DRY", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "Deep learning", 
      "Hybrid Modeling", 
      "Evaporation", 
      "Evaporative Stress", 
      "Transpiration", 
      "GLEAM", 
      "Machine Learning", 
      "Earth System Modeling"
    ], 
    "publication_date": "2021-08-19", 
    "creators": [
      {
        "orcid": "0000-0001-5671-0878", 
        "affiliation": "Hydro-Climate Extremes Lab (H-CEL), Ghent University", 
        "name": "Koppa, Akash"
      }, 
      {
        "orcid": "0000-0003-0768-4209", 
        "affiliation": "Hydro-Climate Extremes Lab (H-CEL), Ghent University", 
        "name": "Rains, Dominik"
      }, 
      {
        "orcid": "0000-0002-9764-3357", 
        "affiliation": "Hydro-Climate Extremes Lab (H-CEL), Ghent University", 
        "name": "Hulsman, Petra"
      }, 
      {
        "orcid": "0000-0001-6186-5751", 
        "affiliation": "Hydro-Climate Extremes Lab (H-CEL), Ghent University", 
        "name": "Miralles, Diego G."
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.5220752", 
        "relation": "isVersionOf"
      }
    ]
  }
}
917
6,466
views
downloads
All versions This version
Views 917509
Downloads 6,4665,969
Data volume 181.2 TB169.5 TB
Unique views 780464
Unique downloads 255125

Share

Cite as