There is a newer version of this record available.

Dataset Open Access

A Deep Learning-Based Hybrid Model of Global Terrestrial Evaporation

Koppa, Akash; Rains, Dominik; Hulsman, Petra; Miralles, Diego G.


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.5220753">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Dataset"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.5220753</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.5220753"/>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0001-5671-0878">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0001-5671-0878</dct:identifier>
        <foaf:name>Koppa, Akash</foaf:name>
        <foaf:givenName>Akash</foaf:givenName>
        <foaf:familyName>Koppa</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Hydro-Climate Extremes Lab (H-CEL), Ghent University</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0003-0768-4209">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0003-0768-4209</dct:identifier>
        <foaf:name>Rains, Dominik</foaf:name>
        <foaf:givenName>Dominik</foaf:givenName>
        <foaf:familyName>Rains</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Hydro-Climate Extremes Lab (H-CEL), Ghent University</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0002-9764-3357">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0002-9764-3357</dct:identifier>
        <foaf:name>Hulsman, Petra</foaf:name>
        <foaf:givenName>Petra</foaf:givenName>
        <foaf:familyName>Hulsman</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Hydro-Climate Extremes Lab (H-CEL), Ghent University</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0001-6186-5751">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0001-6186-5751</dct:identifier>
        <foaf:name>Miralles, Diego G.</foaf:name>
        <foaf:givenName>Diego G.</foaf:givenName>
        <foaf:familyName>Miralles</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Hydro-Climate Extremes Lab (H-CEL), Ghent University</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>A Deep Learning-Based Hybrid Model of Global Terrestrial Evaporation</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2021</dct:issued>
    <dcat:keyword>Deep learning</dcat:keyword>
    <dcat:keyword>Hybrid Modeling</dcat:keyword>
    <dcat:keyword>Evaporation</dcat:keyword>
    <dcat:keyword>Evaporative Stress</dcat:keyword>
    <dcat:keyword>Transpiration</dcat:keyword>
    <dcat:keyword>GLEAM</dcat:keyword>
    <dcat:keyword>Machine Learning</dcat:keyword>
    <dcat:keyword>Earth System Modeling</dcat:keyword>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/869550/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/715254/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2021-08-19</dct:issued>
    <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/>
    <owl:sameAs rdf:resource="https://zenodo.org/record/5220753"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/5220753</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.5220752"/>
    <dct:description>&lt;p&gt;This repository contains the codes and datasets used in the research article &amp;quot;A Deep Learning-Based Hybrid Model of Global Terrestrial Evaporation&amp;quot;.&lt;/p&gt; &lt;p&gt;The repository contains the following files: 1) Codes - contains scripts used for training the deep learning models used in the study, and for creating the figures in the article. 2) Input - contains all the processed input used for training the deep learning models and the datasets used for creating the figures in the article. 3) Output - contains the final deep learning models and the outputs (evaporation and transpiration stress factor) outputs from the hybrid model developed in the study.&lt;/p&gt; &lt;p&gt;Formats: All scripts are in the programming language Python. The datasets are in HDF5 and NetCDF formats&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.5220753"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.5220753"/>
        <dcat:byteSize>30479</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5220753/files/code_koppa_et_al_hybrid_model.zip"/>
        <dcat:mediaType>application/zip</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.5220753"/>
        <dcat:byteSize>1487487925</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5220753/files/input_koppa_et_al_hybrid_model.zip"/>
        <dcat:mediaType>application/zip</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.5220753"/>
        <dcat:byteSize>28798408590</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5220753/files/output_koppa_et_al_hybrid_model.zip"/>
        <dcat:mediaType>application/zip</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/869550/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">869550</dct:identifier>
    <dct:title>DOWN2EARTH: Translation of climate information into multilevel decision support for social adaptation, policy development, and resilience to water scarcity in the Horn of Africa Drylands</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/715254/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">715254</dct:identifier>
    <dct:title>Do droughts self-propagate and self-intensify?</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
917
6,466
views
downloads
All versions This version
Views 917509
Downloads 6,4665,969
Data volume 181.2 TB169.5 TB
Unique views 780464
Unique downloads 255125

Share

Cite as