This article was downloaded by: [University of Bath] On: 13 February 2014, At: 15:57 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Natural History

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/tnah20</u>

The parasitic wasp genera Skiapus, Hellwigia, Nonnus, Chriodes, and Klutiana (Hymenoptera, Ichneumonidae): Recognition of the Nesomesochorinae stat. rev. and Nonninae stat. nov. and transfer of Skiapus and Hellwigia to the Ophioninae

Donald L. J. Quicke ^{a b} , Mike G. Fitton ^a , Gavin R. Broad ^{a c} , Barnaby Crocker ^b , Nina M. Laurenne ^d & M. Ismail Miah ^e

 $^{\rm a}$ Department of Entomology , The Natural History Museum , London, UK

^b Division of Biology, Imperial College London , Silwood Park Campus , Ascot, UK

 $^{\rm c}$ Centre for Ecology and Hydrology , Abbots Ripton , Huntingdon, UK

^d Finnish Museum of Natural History, Zoological Museum, Entomological Division, University of Helsinki, Finland

^e Department of Zoology, University of Chittagong, Chittagong, Bangladesh

^f Division of Biology, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK E-mail: Published online: 21 Feb 2007.

To cite this article: Donald L. J. Quicke, Mike G. Fitton, Gavin R. Broad, Barnaby Crocker, Nina M. Laurenne & M. Ismail Miah (2005) The parasitic wasp genera Skiapus, Hellwigia, Nonnus, Chriodes, and Klutiana (Hymenoptera, Ichneumonidae): Recognition of the Nesomesochorinae stat. rev. and Nonninae stat. nov. and transfer of Skiapus and Hellwigia to the Ophioninae, Journal of Natural History, 39:27, 2559-2578, DOI: <u>10.1080/00222930500102546</u>

To link to this article: http://dx.doi.org/10.1080/00222930500102546

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

The parasitic wasp genera *Skiapus*, *Hellwigia*, *Nonnus*, *Chriodes*, and *Klutiana* (Hymenoptera, Ichneumonidae): Recognition of the Nesomesochorinae stat. rev. and Nonninae stat. nov. and transfer of *Skiapus* and *Hellwigia* to the Ophioninae

DONALD L. J. QUICKE^{1,2}, MIKE G. FITTON¹, GAVIN R. BROAD^{1,3}, BARNABY CROCKER², NINA M. LAURENNE⁴, & M. ISMAIL MIAH⁵

¹Department of Entomology, The Natural History Museum, London, UK, ²Division of Biology, Imperial College London, Silwood Park Campus, Ascot, UK, ³Centre for Ecology and Hydrology, Abbots Ripton, Huntingdon, UK, ⁴Finnish Museum of Natural History, Zoological Museum, Entomological Division, University of Helsinki, Finland, and ⁵Department of Zoology, University of Chittagong, Chittagong, Bangladesh

(Accepted 10 January 2005)

Abstract

The ichneumonid wasp genera *Skiapus* Morley, *Hellwigia* Gravenhorst, *Nonnus* Cresson, *Chriodes* Förster, and *Klutiana* Betrem are each formally removed from the Campopleginae on the basis of morphological, molecular, and simultaneous analyses using PAUP* and the optimization alignment program POY. *Skiapus* and *Hellwigia* are shown to form a monophyletic group with the Ophioninae to which they are transferred. *Nonnus* is treated as comprising the Nonninae stat. nov. and *Chriodes* and *Klutiana* (sometimes treated as a junior synonym of *Chriodes*) are treated as comprising the Nesomesochorinae stat. rev. The status of Nesomesochorinae and Nonninae is not fully resolved as they are not consistently recovered as separate groups, forming a single clade in some analyses. We keep them separate because of this uncertainty. Molecular synapomorphies within the D2–3 expansion region of the 28S rDNA gene show the utility of this gene region in determining subfamily-level placement within the higher Ophioniformes.

Keywords: Campopleginae, Nonnini, parasitoid, phylogeny, taxonomy

Introduction

Much effort has recently been put into obtaining a wide range of ichneumonoids for DNA sequencing projects aimed at answering a range of evolutionary questions (Belshaw et al. 1998, 2001; Broad and Quicke 2000; Belshaw and Quicke 2002; Dowton et al. 2002). As a result, representatives of many genera whose systematic placement has hitherto been

Published 30 June 2005.

ISSN 0022-2933 print/ISSN 1464-5262 online 2005 Taylor & Francis Group Ltd DOI: 10.1080/00222930500102546

Correspondence: D. L. J. Quicke, Division of Biology, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK. Email: d.quicke@imperial.ac.uk

uncertain have been obtained, and in several cases it is now possible to offer a more definite conclusion about their relationships. Here we use morphological, molecular, and simultaneous analyses to explore the relationships of five genera currently included in the Campopleginae but which do not fit well there and might therefore belong to other groups.

The Campopleginae *sensu lato* is a very large, cosmopolitan ichneumonid subfamily and comprises approximately 70 valid genera and 1836 species (Yu and Horstmann 1997; Wahl 1999). Campoplegines are koinobiont endoparasitoids, nearly all attacking Lepidoptera larvae, though a few taxa use larvae of other groups as hosts, including tenthredinoid symphytans (Hymenoptera), Raphidioptera, Trichoptera and chrysomelid, curculionid and cerambycid beetles (Coleoptera). Although the Campopleginae is an important group of parasitoids from both economic and biological standpoints, there have been very few studies of relationships within the subfamily (Wahl 1991; Dbar 1993; Miah and Bhuyia 2001) and it has been considered to be one of the most taxonomically difficult groups in the Ichneumonidae (Townes 1970; Gauld and Mound 1982; Gauld 1984).

Although the overall limits of the Campopleginae have been relatively stable since Townes' (1970) generic treatment, as with so many ichneumonoid subfamilies, morphological synapomorphies defining it are hardly apparent. Within the Campopleginae there are considerable disagreements about its classification at all levels (Townes 1970; Carlson 1979; Gauld 1984; Wahl 1991). Two aberrant tribes, the Hellwigiini and Nesomesochorini recognized by Townes et al. (1961, 1965) are morphologically distinct from the rest of the Campopleginae and do not appear to fit well there. The hellwigiines have long been considered as a distinct group and Horstmann (1969) went as far as to raise them to subfamily status, the Hellwigiinae, comprising the two genera *Hellwigia* Gravenhorst and *Protohellwigia* Brues. Townes (1970), at almost the same time, continued to treat the Hellwigiini within the Campopleginae (=Porizontinae sensu Townes) as a tribe including the genera *Hellwigia* (with which he synonymized *Protohellwigia* Brues) and *Skiapus* Morley.

Wahl (1991) considered the phylogenetic placement of *Rhimphoctona* Förster, a genus with a relatively long ovipositor that attacks wood-boring beetle larvae, with reference to the higher categories within the subfamily. The study included both larval and adult characters and he concluded that the existing tribes were unsound and instead recognized five, less formal, genus groups, although he stated that all were monophyletic. Three of these were monotypic (the Nemeritis Holmgren, Gonotypus Förster, and Menaka Gupta groups), the Bathyplectes group included a small number of genera (Bathyplectes Förster, Rhimphoctona, Pyracmon Holmgren, Nepiesta Förster, and Leptoperilissus Schmiedeknecht), while the Dusona Cameron group embraced all the remaining genera (including those previously in the tribes Hellwigiini and Nesomesochorini). Rhimphoctona represented a basal group which formed the sister clade to the rest of the subfamily. However, in Miah's (1998) preliminary morphological analyses of campoplegine genera, five genera, included in the Dusona group by Wahl (1991, 1999), namely Skiapus, Hellwigia, Nonnus, Chriodes, and Klutiana, were never recovered with the other members of the subfamily. The first two were associated consistently with the Ophioninae and the latter usually with the Anomaloninae. Molecular analyses have further suggested that neither the Nesomesochorini nor *Hellwigia* are actually campoplegines. In the preliminary molecular and simultaneous molecular and morphological analyses of Quicke et al. (2000), Nonnus was found not to cluster with the three other Campopleginae included, though its placement elsewhere was not stable. More recently, the molecular phylogeny presented by Belshaw and Quicke (2002) placed *Hellwigia* within the Ophioninae and *Nonnus* and *Chriodes* as the sister group of the Anomaloninae, largely in agreement with Miah's morphological trees.

Here we present additional 28S rDNA sequence data, including all the genera of Hellwigiini and Nesomesochorini together with a far denser sampling of campoplegine and related genera. These data are analysed separately and in combination with a morphological data set, based on the individual exemplar genera, using direct optimization to deal with the length variation in the gene fragment used. The results lead us to transfer *Hellwigia* and *Skiapus* to the Ophioninae and to recognize the Nesomesochorinae and Nonninae as subfamilies.

Materials and methods

Selection of taxa

The Campopleginae belongs to the "Ophioniformes" group of subfamilies as proposed by Wahl (1991). This group currently comprises the Ophioninae, Ctenopelmatinae, Banchinae, Mesochorinae, Metopiinae, Campopleginae, Tatogastrinae, Cremastinae, Tersilochinae, and Anomaloninae, though molecular and morphological data additionally indicate that the Lycorininae, Neorhacodinae, Oxytorinae, Phrudinae, Stilbopinae, and Tryphoninae also belong in the same large clade (Belshaw and Quicke 2002; D. L. J. Quicke et al., in preparation). Within this complex Gauld (1985) and Wahl (1991) suggested Ophioninae and Cremastinae, respectively, as the sister group of Campopleginae. The first hypothesis was supported by the most parsimonious tree (MPT) resulting from analyses of 28S rDNA by Belshaw et al. (1998) without any bootstrap support, and subsequently with high support by Belshaw and Quicke (2002). In the present analyses we therefore selected a number of genera of Ophioninae along with a smaller selection from each of the Anomaloninae, Banchinae, Cremastinae, Ctenopelmatinae, and Tersilochinae, in order to allow us to test the monophyly of Campopleginae sensu lato. The Orthopelmatiformes (comprising the genus Orthopelma Taschenberg) was selected as the outgroup because in previous molecular and simultaneous analyses it nearly always formed the sister group to the enlarged Ophioniformes group (Quicke et al. 2000).

The genera of Campopleginae included in our analyses covered a wide range of the subfamily based on the cladistic analyses of Miah (1998). Our selection was also influenced by the five genus groups recognized by Wahl (1991), but we were unable to obtain material for sequencing of the *Nemeritis* and *Menaka* groups (both monotypic). The taxa sequenced are listed in Table I together with the EMBL/GenBank accession numbers of the sequences obtained. Morphological characters were scored as far as possible for the same taxa as sequenced, but we also examined a range of other species and scored characters as polymorphic where intrageneric variation was encountered. When larval and internal characters had not been scored for the same species, the data presented are from congeners; no assumptions were made beyond that. We coded taxa for 67 morphological characters (Table II); the matrix is included as the Appendix.

Molecular protocols

DNA was extracted from single mid-legs preserved in absolute ethanol using the ethanol precipitation method with final elution into $30 \mu l$ of water. Polymerase chain reactions

Taxon	Provenance	EMBL accession number
Campopleginae		
Bathyplectes sp. (curculionis species group)	Germany: Bayer Wald	AY593068
Campoplex deficiens Gravenhorst	UK: Hilbre Island	AY593078
Casinaria petiolaris (Gravenhorst)	Hungary	AY593069
Charops sp.	Malaysia (Sabah)	AJ302844
Cryptophion manueli Gauld and Janzen	Costa Rica	AY593070
Cymodusopsis sp.	Belize: Las Cuevas	AY593071
Diadegma mollipla (Holmgren)	South Africa	AJ302851
Dusona sp.	UK: Sheffield	Z97891
Echthronomas facialis (Thomson)	France	AY593072
Eriborus ?terebrans (Gravenhorst)	W. Malaysia: Cameron Highlands	AY593073
Gonotypus melanostoma (Thomson)	UK: Silwood	AY593074
Hyposoter didymator (Thunberg)	Ex laboratory culture	AY593075
Lathrostizus ?lugens (Gravenhorst)	UK: Silwood	Z97892
Leptocampoplex cremastoides (Holmgren)	Germany: Bayer Wald	AY593076
Melalophacharops sp	W. Malaysia: Cameron Highlands	AY593077
Olesicampe sp.	Germany: Bayer Wald	AY593079
Phobocampe sp.	Germany: Bayer Wald	AY593080
Rhimphoctona ?grandis (Fonscolombe)	Turkey	AI302872
Scirtetes robustus (Woldstedt)	UK: Lancashire	AY593081
Tranosema rostrale (Brischke)	Ex laboratory culture	AY593082
Venturia ocypeta (Gauld)	Australia	AY593083
Xanthocampopler sp	Australia	AI302917
Nesomesochorinae	Tustrunu	11,502511
Chriodes sp	2Tanzania	AI302845
Klutiana sp	Ianan	AY593066
Nonninae	Jupun	111,575,000
Nonnus sp	Costa Rica	797893
Ophioninae		201000
Afrophion hypnis (Gauld and Mitchell)	S Africa: Cape Prov	AY593084
Alophophion sp	Falkland Islands	AY593085
Barytatocephalus mocsaryi (Brauns)	Turkey: Siyas	AY593086
Dicamptus sevrigi Delobel	Madagascar	AY593087
Enicospilus ramidulus (Linnaeus)	LIK: Silwood	797887
Eremotylus marginatus (Jurine)	France: Dordogne	797886
Europhion latioennis (Kirby)	Togo	AI302854
Hellminia obscura Gravenhorst	France: Dordogne	AI302858
Laticoleus infumatus Gauld and Mitchell	Uganda: Kibale	AY593088
Leptophion anici Gauld	Australia	AY593089
Rhynchophion flammipennis (Ashmead)	Costa Rica	AY593090
Skiabus sp	Tanzania: Amani	AY593067
Thyreodon laticinctus Cresson	Belize: Las Cuevas	AI302876
Anomaloninae	Denze. Lus Guevus	1,502010
Anomalon sp	Turkey	AI302838
Barylypa sp	Papua New Guinea	AY593091
Grazienhorstia (Erigorgus) sp	Turkey	AY593092
Habronvx sp.	Turkey	AY593093
Trichomma sp.	Malaysia (Sabah)	AI302878
Cremastinae		1,502010
Cremastus spectator Gravenhorst	UK: Gwent	AY593094
Temelucha sp.	Turkey	AY593095

Table I. Taxa included in study, their provenance and EMBL/GenBank accessions numbers (arrangement of taxa in accordance with classification resulting from this study).

Taxon	Provenance	EMBL accession number
Ctenopelmatinae		
Anoncus sp.	UK: Silwood	AY593096
Euryproctus numidicus Schmiedeknecht	Germany: Bayer Wald	AY222798
Glyptorhaestus sp.	Germany: Bayer Wald	AY593097
Perilissus albitarsis Thomson	UK: Silwood	Z97903
Sympherta sp.	Russia: Kaliningrad	AY593098
Tersilochinae		
Allophrys sp.	Belize: Las Cuevas	AY593099
Stethantyx sp.	Belize: Las Cuevas	AJ302874
Tersilochus heterocerus (Thomson)	UK: Harpenden	AY593100
Banchinae		
Banchus volutatorius (Linnaeus)	UK: Hilbre Island	AJ302842
Glypta altamirai Godoy and Gauld	Costa Rica	AY593101
Meniscomorpha zacasta Ugalde and Gauld	Costa Rica	AY593102
Syzeuctus sp.	Belize: Las Cuevas	AY593103
Orthopelmatinae		
Orthopelma sp.	Turkey	AY222799

Table I. (Continued.)

(PCRs) were carried out in a GeneAmp9600 thermal cycler in 20 µl reactions containing 1.0 µl of DNA extract, 10 pmol of primers (forward: 5' GCG AAC AAG TAC CGT GAG GG 3'; reverse: 5' TAG TTC ACC ATC TTT CGG GTC 3'), 10 nmol of dNTPs (Amersham Pharmacia Biotech: APB), 1.0U of *Taq* polymerase (Bioline), 2µl of $10 \times$ reaction buffer (2.0 mM MgCl₂). PCR conditions were 94°C for 30 s, 50°C for 30 s, and 72°C for 60 s (35 cycles with an initial denaturation for 2 min and a final extension for 7 min). PCR products were purified using GFX gel band purification kit (APB) and sequenced directly using *BigDye* terminators.

Data analysis

The morphological and molecular data sets were analysed both separately and simultaneously. Morphological data were analysed with maximum parsimony using PAUP* (Swofford 1998) treating multistate characters as both unordered and with selected characters set as ordered (see below). Initially we searched a large area of tree space by using 10,000 random additions holding only a single tree in memory for branch swapping (TBR) each addition. The shortest trees found were then used as starting trees for further branch-swapping with maxtrees set at 50,000. Successive approximations weighting was carried out on most parsimonious trees using the maximum value of the retention index as the reweighting function (Gauthier et al. 2000).

Analyses involving molecular data were carried out using direct optimization (Wheeler 1996; Gladstein and Wheeler 2001) implemented using the program POY (version 3.0.11a, 20 May 2003) on a supercomputer at the University of Helsinki. The 28S D2–D3 sequences were initially arranged by eye to recognize regions for which homology could be assigned with high confidence. Nineteen putatively homologous regions were then

Table II. Morphological characters and character states used in this study (terminology for body features and wing venation broadly follows Goulet and Huber 1993 and Gauld and Bolton 1996; the naming of propodeal carinae and areas follows Townes 1969).

Morphological character and states
worphological character and states
Clypeal bristles: (0) not in a regular transverse row at ventral margin; (1) in the form of a very regular comb of strong bristles.
Clypeus: (0) not extended beyond tentorial pits; (1) extended beyond tentorial pits (Sanborne 1986; Wahl 1991).
Clypeus and face: (0) separated by a groove or depression; (1) not separated by a groove (Gauld 1985; Wahl 1991).
Number of flagellomeres: (0) 40 or fewer; (1) more than 40.
Median flagellar segments: (0) longer than wide or quadrate; (1) at least 1.05 times wider than long.
Antenna length: (0) less than fore wing; (1) equal to or greater than fore wing. Ocelli: (0) small, separated from eye by more than 0.5 times their diameter; (1) enlarged, nearly
Emargination of eyes adjacent to antennal sockets: (0) weak or absent; (1) moderate; (2) strong
Inner margin of eyes: (0) parallel; (1) weakly converging ventrally; (2) moderately to strongly converging ventrally. (Townes 1970; Kusigemati 1983; Sanborne 1986). [ordered]
Anterior tentorial pits: (0) closer to eye than to mandible; (1) closer to mandible than to eye.
Colour of setae on face and mesosoma: (0) silvery; (1) pale brown to black.
Maxillary palp: (0) five-segmented; (1) with four or fewer segments.
Labial palp: (0) four-segmented; (1) with three or fewer segments.
Mandible shape: (0) weakly tapered, apex (measured before separation of distal teeth) more than 0.5 times as broad as base; (1) 0.4–0.5 times as broad as base; (2) less than 0.3 times as broad as base. [ordered]
Labrum: (0) projecting, strongly sclerotized; (1) not projecting and not usually strongly sclerotized.
Epomia: (0) present; (1) absent (Wahl 1991).
Propleuron: (0) without lateroventral posteriorly projecting flange; (1) with lateroventral posteriorly projecting flange (Wahl 1991).
Notauli: (0) present; (1) absent.
Sternaulus: (0) present and sharp at least up to mid-length of mesopleuron; (1) absent.
Mesopleuron: (0) without diagonal groove or depression extending from upper anterior corner; (1) with such a groove or depression
Metenisternal nit: (0) absent: (1) present
Posterior transverse carina of mesosternum: (0) incomplete: (1) complete (Wahl 1991).
Submetapleural carina: (0) incomplete, not extended to form a flange anteriorly; (1) complete, forming a narrow flange; (2) expanded into a broad flange anteriorly. [ordered]
Propodeum surface: (0) not irregularly coarsely rugose-areolate; (1) irregularly coarsely rugose- areolate.
Median section of anterior transverse propodeal carina (M in Townes 1969, Figure E): (0) present; (1) absent.
Median section of posterior transverse propodeal carina (N in Townes 1969, Figure E): (0) present; (1) absent.
Propodeal spiracles: (0) round to short elliptical; (1) elongate, at least three times longer than wide.
Fore wing: (0) without an adventitious vein; (1) with well-defined, adventitious vein running parallel to and removed from the hind margin of cell 3-Cu. This has been recognized previously as an autapomorphy of the Ophioninae. A similar vein occurs in a number of scattered cases in other subfamilies (Groteini, <i>Grotea anguina</i> Cresson; Poemeniinae, <i>Ganodes balteatus</i> Townes, <i>Rodrigama gamezi</i> Gauld; Gravenhorstiini, <i>Gravenhorstia</i> Boie spp.), but it is never so long or well defined, usually tends towards the hind margin of the wing and is often obfuscated in a brown cloud. Wahl (1990) considers that an adventitious vein, similar to the ophionine condition, occurs in Tatogastrinae, but our observations of <i>Tatogaster</i> Townes reveals only a poorly defined infuscation in this area, similar to the condition in many ichneumonids.

Table II. (Continued.)

Character	
number	Morphological character and states
30	Pterostigma of fore wing: (0) wide, less than 2.5 times longer than broad; (1) slender, more than 2.5 times longer than broad.
31	Fore wing vein Rs2r meeting pterostigma: (0) at about 30° and rather straight; (1) at 30–45°; (2) at an angle greater than 45°. [ordered]
32	Marginal cell of fore wing: (0) short; (1) long; (2) very long (Gauld 1984, 1985). [ordered]
33	Vein cu-a of fore wing in respect of Cu: (0) weakly to strongly inclivous; (1) vertical or reclivous.
34	Veins around areolet: (0) not thickened: (1) thickened.
35	Fore wing with: (0) two rs-m cross-veins, forming an areolet: (1) one rs-m cross-vein.
36	Cross-vein rs-m of fore wing (when only one present, that is 2rs-m or 3rs-m is lost): (0) proximal to vein 2m-cu; (1) distal or opposite (interstitial) to vein 2m-cu. Wahl (1991) considers that the two different veins which may be involved can effectively be distinguished by whether the remaing one is proximal or distal to vein 2m-cu. However, the condition in <i>Skiapus</i> is very nearly interstitial, and we prefer not to make any assumption of which vein this is.
37	Fore wing veins 2rs-m and 3rs-m: (0) arising independently from Rs; (1) with a common section from Rs, that is, the areolet is petiolate.
38	Vein Rs of hind wing: (0) shorter than; (1) equal to; (2) longer than rs-m.
39	Vein M+Cu of hind wing with apical third of first abscissa: (0) strongly curved; (1) straight or at most weakly curved.
40	Basal 0.6 of M+Cu: (0) spectral or absent; (1) distinct and present.
41	Distal abscissa of Cu of hind wing: (0) distinct and pigmented; (1) spectral or absent.
42	If distal abscissa of hind wing vein Cu present then Cu&cu-a of hind wing: (0) intercepted; (1) not intercepted.
43	Basal hamuli of hind wing: (0) situated well away from wing base, not on tubular vein; (1) very close to wing base, on proximal spur of tubular or strongly sclerotized vein C.
44	Distal hamuli of hind wing: (0) widely separated; (1) closely spaced.
45	Number of distal hamuli: (0) 9 or more; (1) 6-8; (2) fewer than 6. [ordered]
46	Membrane of fore wing: (0) uniformly setose; (1) with glabrous area.
47	Membrane of forewing: (0) without alar sclerite(s); (1) with sclerites.
48	Apex of fore tibia: (0) simple; (1) with a strong tooth-like projection.
49	Fore and mid-tibiae of female: (0) simple, widest at about mid-length; (1) clavate.
50	Pecten of claws: (0) not reaching apex; (1) reaching apex.
51	Pecten of claws if reaching apex: (0) straight; (1) sinuous (Gauld 1985; this also occurs in a small number of other taxa (Ctenopelmatinae, <i>Ctenopelma luciferum</i> (Gravenhorst)—female only; Mesochorinae, <i>Cidaphus rostratus</i> Dasch; Cremastinae, <i>Xiphosomella</i> Szépligeti sp.).
52	Hind tibial fringe of setae: (0) simple; (1) strongly incurved in the middle, longest setae anteriorly, shortest medially.
53	Bridge separating spurs and tarsus of mid- and hind tibia: (0) absent; (1) present.
54	Length of first metasomal segment: (0) less than second segment; (1) 0.95–1.05 times length of second segment; (2) longer.
55	Suture between first metasomal tergite and sternite: (0) incomplete or absent; (1) complete.
56	Spiracles on first metasomal segment: (0) more than 0.7 distance from the base; (1) less than 0.65 distance from base.
57	First metasomal sternite: (0) long, medially reaching more than 0.7 along tergite; (1) shorter, not reaching beyond 0.65.
58	Glymma on first metasomal tergite: (0) absent; (1) present (see Wahl 1991).
59	Second metasomal tergite: (0) with thyridia; (1) without thyridia.
60	Metasomal tergite 2: (0) not striate; (1) longitudinally striate.
61	Third metasomal tergite and laterotergite: (0) completely separated by crease; (1) not or only partially separated.
62	Exposed portion of ovipositor: (0) longer than metasoma; (1) of medium length, shorter than metasoma, but longer than depth of apical part of metasoma; (2) short, at most equal to depth of apical part of metasoma. [ordered]
63	Number of rectal pads: (0) 2; (1) 4–6; (2) 10 or more (see Miah 1998; Quicke et al. 1999).

2566 D. L. J. Quicke et al.

Table II. (Continued.)

Character number	Morphological character and states
64	Prelabium of final instar larva; (0) with 6 or fewer sensilla; (1) with 8 or more sensilla. A larger number of sensilla is also found in the Banchinae (<i>Banchus</i> group).
65	Final instar larvae prelabial sclerite: (0) absent or very lightly sclerotized and only represented by lateral arms; (1) present and sclerotized.
66	Final instar larva prelabial sclerite when sclerotized: (0) transverse or curved; (1) triangular; (2) "Y"-shaped (see Short 1978; Wahl 1991).
67	Final instar larval epistoma: (0) complete; (1) largely unsclerotized, especially medially.

identified and split into separate blocks to enable more thorough POY searches to be carried out. The following POY commands were used for all runs:

-fitchtrees –norandomizeoutgroup –random 50 –multibuild 10 –treefuse –fuselimit 50 –noleading -slop 5 –checkslop 2 –buildmaxtrees 2 –maxtrees 2 –impliedalignment –holdmaxtrees 50 –driftspr -drifttbr –numdriftspr 5 –numdrifttbr 5 –seed –1

The data were run with gap:substitution cost ratios of 2:1, 3:1, and 4:1. For simultaneous molecular and morphological analyses, all morphological polymorphisms were treated as unknown, all characters were treated as unordered and all state changes assigned the same cost as a substitution.

Results

Morphological analysis

The MPTs obtained, either with all characters unordered (Figure 1a) or with selected ones ordered (Figure 1b) were essentially similar, though the strict consensus tree of the latter was somewhat less resolved. Neither recovered the Campopleginae as monophyletic, but instead it was paraphyletic with respect to the Anomaloninae, Banchinae, Ctenopelmatinae, and Ophioninae in all cases and also with respect to the Cremastinae in non-successive approximation trees. The Nesomesochorini (*Chriodes, Klutiana*, and *Nonnus*) was recovered as monophyletic in all analyses. *Skiapus* and *Hellwigia* were included in the large polytomy in both the unordered and ordered analyses (Figure 1a, b), but in the successive approximations trees (Figure 1c) were associated with a derived clade comprising the Ophioninae and Anomaloninae.

Molecular analysis

The trees obtained from the three different POY analyses (with different gap:substitution ratios) were very similar and strict consensus trees for each are given in Figure 2a–c. In all cases the Campopleginae excluding *Chriodes*, *Klutiana*, *Nonnus*, *Skiapus*, and *Hellwigia* was monophyletic whereas Ctenopelmatinae was paraphyletic at least with respect to the Campopleginae and in the case of the 2:1 and 4:1 also with respect to the Ophioninae. In all cases, *Skiapus* and *Hellwigia* were recovered monophyletic with, and usually separately inside, the Ophioninae. In all analyses *Chriodes*, *Klutiana*, and *Nonnus* were monophyletic with Anomaloninae and in 3:1 and 4:1 *Nonnus* was recovered inside the Anomaloninae as the sister group of *Trichomma* Wesmael.

Figure 1. Strict consensus of: (a) MPTs with all characters unordered; (b) MPTs when selected characters treated as ordered; (c) after successive approximations weighting with selected characters treated as ordered.

Figure 2. Strict consensus of trees obtained from optimization alignment analysis of molecular data with gap:substitution ratio set at (a) 2:1, (b) 3:1, and (c) 4:1.

Simultaneous analysis of molecular and morphological data

The trees obtained from the three simultaneous analyses (with different gap:substitution ratios) were very similar and are presented in Figure 3a–c. In all cases the Campopleginae excluding *Chriodes, Klutiana, Nonnus, Skiapus* and *Hellwigia* was recovered as monophyletic and formed a sister group to a monophyletic Ctenopelmatinae, and in turn these were the sister group to the Cremastinae. In all trees *Skiapus* formed a sister group to the Ophioninae plus *Hellwigia*, the latter being recovered in a derived position with *Euryophion* Cameron and *Thyreodon* Brullé. In the 2:1 tree (Figure 3a) *Chriodes, Klutiana,* and *Nonnus* form a monophyletic group which is the sister group of the Anomaloninae plus Ophioninae (including *Skiapus* and *Hellwigia*). With a 3:1 gap:substitution ratio *Nonnus* remained in that position while *Chriodes, Klutiana,* and *Nonnus* were again recovered as monophyletic, but here forming a sister group to a clade comprising Ophioninae (including *Skiapus* and *Hellwigia*), Anomaloninae, the restricted Campopleginae, Ctenopelmatinae, and *Hellwigia*).

Discussion and conclusions

That the Campopleginae *sensu lato* were not recovered as monophyletic in the analysis of morphological data set, despite inclusion of several characters normally considered as synapomorphies for the subfamily (for example, the silvery setae of the face, lack of a distinct groove between the clypeus and face and, where known, the Y-shaped prelabial sclerite of the final instar larva) is not too surprising since the Ichneumonidae are well known to show high levels of morphological homoplasy. This may explain why many studies treat groups at subfamily level rather than including representative genera or large numbers of characters.

The 28S rDNA sequence data, on the other hand, reveal several substitutions that appear to be synapomorphies for the Campopleginae with the exceptions of Skiapus, Hellwigia, Nonnus, Chriodes, and Klutiana. Some of these are highlighted in Figure 4. The sequences obtained for Skiapus and Hellwigia both possess the two obvious molecular synapomorphies characteristic of all members of the Ophioninae sequenced to date [for example, inserts in fragments 3 and 4 in Figure 4 (boxed)] and lack the synapomorphies of the Campopleginae [for example, substitutions in fragments 1 and 2 in Figure 4 (black circles)]. Thus it is not surprising that Skiapus and Hellwigia are recovered in a monophyletic clade with the Ophioninae in the POY trees. However, these two genera are not recovered together either in purely molecular or simultaneous analyses, and the DNA sequence fragments shown in Figure 4 suggest why. Within the Ophioninae a number of Enicospilus species possess a four-base insertion in the D2 28S rDNA (Figure 4 fragment 3) that is present (albeit without base homology) in *Skiapus*. Given the lack of base homology and the fact that this is just a two-base pair insertion within an already variable piece of DNA, it would be unwise to attribute too much to this. All Ophioninae (sensu Gauld, 1985) may possess a high number of rectal pads, whereas campoplegines either possess the putatively plesiomorphic number (six) or fewer (four or five) (Pampel 1914; Quicke et al. 1999). The number of ophionine genera examined (just three) is, however, inadequate to draw conclusions about whether the whole subfamily is characterized by the large number of rectal pads (a character state, incidentally, also shared by the Anomaloninae, Rhyssinae, and some Acaenitinae in the Ichneumonidae, and by the genus

Figure 3. Strict consensus of trees obtained from simultaneous optimization alignment analyses of morphological and molecular data with gap:substitution ratio set at (a) 2:1, (b) 3:1, and (c) 4:1.

Taxon	Fragment 1	Fragment 2	Fragment 3	Fragment 4
Anomaloninae	•	•	-	•
Anomalon sp.	CCGAAAGATCGAAT	CTCGGCGATTGCGCG	CGCGTTCCT CGCCTCGCGGCG	GCGCGG CAGACCCC
Barylypa sp.	CCAAAAGATNGNAT	CNCGGCRCNCGGGTN	CGCGCGTAA CGCTTCGCGGCG	GCGCGG CAGACCCC
Gravenhorstia sp.	NNNAAAGATCGAAT	CTCGGTACGTGCGCG	CGCGCGTAA CGCTTCGCGGCG	GCGTGG CAGACCCC
Habronvx sp.	CCAAAAGATCGAAT	CTCGGCACGTGCGCG	CACGCGTAA CGCCTCGCGGCG	GCGTGG CAGACCCC
Trichomma sp.	CCAAAAGATCGAAT	TCCCGGCGAGCGGGC	CGCGGGCAAC CCCCTCGCGGGG	TCGTTG CAGACCCC
Reclassified taxa				
Chriodes sp.	CCAAAAGATCGAAT	CCCGGCGCGTGTGCG	CGCGTGCAA CGCTTCGCGGCG	GCGTGG CAGACCCC
Klutiana sn.	CCAAAAGATCGAAT	CCCGGCGCGTGTGCG	CACGTGCAA CGCTTCACGGCG	GCGTGG CAGACCCC
Nonnus sp.	CCAAAAGATCGAAT	CTCGGCGGCCGAGCG	CGCGCGTCA CGCTTCGCGGCG	GCGCGG CAGACCCC
Skiapus sp.	CCGAAAGATCGAAT	TCCGGCGCTTCCGCG	CACGCGTAC G GC A CCCTTCGCGGGG	ATGTGG CTGA CAGATCCC
Hellwigia obscura	CCAAAAGATCGAAT	CCTGGCACATGCGCG	TA-GTGTAC GG CGCTTTACGGCG	ATGTGT CTGA CAGACCCC
Ophioninae				
Afrophion hynnis	CCAAAAGATCGAAT	CCAGACACCCGTGCG	CATGTGTAC GA CGCTTCACGGCG	ATGTGG CTGA CAGACCCC
Alonhonhion sp.	CCAAAAGATCGAAT	CCAGGCACGTGTGCG	CATGTGTAC GA CGCTTCACCGCG	ATGTGG CTGA CAGACCCC
Barvtatocenhalus mocsarvi	CCAAAAGATCGAAT	CCTGGCACGCGTGCG	CATGCGTAC GA CGCTTCGCGGCG	ATGTGG CTGA CAGACCCC
Dicamptus sevrigi	CCAAAAGATCGAAT	CCAGGCGCTTGTGCG	CATGCGTAC GA CGNTTCGCGGCG	ATGTGG CTGA CAGACCCC
Enicospilus ramidulus	CCGAAAGATCGGAT	CCAGGCGCGTGTGCG	CATGCGTAC GCGA CGCCTCGCGGCG	ACGTGG CTGA CAGACCAC
Eremotylus marginatus	CCAAAAGATCGAAT	CCTGGCACGTGTGCG	CATGTGTAC GA CGCTTCACGGCG	ATGTGG CTGA CAGACCCC
Eurvonhion latinennis	CCAAAAGATCGAAT	CCTGGCGCGTGCGCG	CATGTGTAC GA CGCTTCACGGCG	ATGTGG CTGA CAGACCCC
Thvreodon laticinctus	CCAAAAGATCGAAT	CCTGGCACGTGCGCG	CATGTGTAC GA CGCTTCACGGCG	ATGTGG CTGA CAGACCTC
Camponleginae	•	•		
Rathynlectes sn	CCAAAAGTTCGAAT	CCTGGCAATTGTGCG	CATATGTTA CGCTTCACGGCG	ATGTGG CAGACCCC
Casinaria netiolaris	CCAAAAG T TCGAAT	CCTTGCAATTGTGCG	CATGTGTTA CGCTTCACGGCG	ATGTGG CAGACCCC
Charops sp	CCAAAAGTTCGAAT	CCTGGCAATTGTGCG	CATACGTCA CGCTTCACGGCG	GTGTGG CGGACCCC
Cryptophion manueli	CCAAAAGTTCGAAT	CCCGGCGA-TGCGCG	CATGTGTTA CGCTTCACCGCG	ATGTGG CAGACCCC
Cyproprior manaen Cymodusonsis sn	CCAAAAG T TCGAAT	CCTGGCAATTGTGCG	CATGTGTTA CGCTTCACGGCG	ATGTGG CAGACCCC
Diadegma mollinla	CCAAAAGTTCGAAT	CCCGGCGA-TGTGCG	CATGTGTTA CGCTTCACGGCG	ATGTGG CAGACCCC
Dusona sn	CCAAAAGTTCGAAT	CCTGGCAATTTTGCG	CATGTGTTA CGCTTCACGGCG	ATGTGG CAGACCCC
Friharus terebrans	CCAAAAGTTCGAAT	CCCGGCGA-TGCGCG	CATGTGTTA CGCTTCACGGCG	ATGTGG CAGACCCC
Hyposoter didymiator	CCAAAAGTTCGAAT	CCCGGCTA-TGTGCG	CATGTGT-A CGCTTCACGGCG	ATGTGG CAGACCCC
Lathrostizus lugens	CCAAAAGTTCGAAT	CCCGGCGA-TGTGCG	CATGTGTTA CGCTTCACGGCG	ATGTGG CAGACCCC
2Phohocampe sp	CCAAAAGTTCGAAT	CCTGGCAATTGTGCG	CATGTGTTA CGCTTCACGGCG	ATGTGG CAGACCCC
Rhimphoctona grandis	CCAAAAG T TCGAAT	CCTGGCAATTGTGCG	CATGTGTTA CGCTTCACGGCG	ATGTGG CAGACCCC
Tranosema rostrale	CCAAAAGTTCGAAT	CCTGGCAATTGTGCG	CATGTGTCA CGCTTTACGGCG	ATGTGG CGGACCCC
Venturia ocvpeta	CCAAAAGTTCGAAT	CCTGGCAATTGTACG	CATGTGTTA CGCTTCACGGCG	ATGTGG CAGACCCC
Yanthocamponley sp	CCAAAAGTTCGAAT	CTTGGCGA-TGTGCG	CATGTGTCA CGCTTCACGGCG	ATGTGG CAGACCCC
Cremastinae				
Cremastus spectator	CCAAAAGATCGAAT	CCTGGCGCTCGTGCG	CGTTTGTTA CGCTTCGCGGCG	ACGCGG CAGACCCC
Temelucha speciality	CCAAAAGATCGAAT	CCTGGCGCTAGCGCG	CGTTTGTTA CGCCTCGCGGCG	ATGCGG CAGACCCC
Ctenonelmatinae				
Anoncus sp	CCAAAAGATCGAAT	CCAGGCACGTGTGCG	CATGTGTTA CGCTTTACGGCG	ATGTGG CAGACCCC
Furvnroctus numidicus	CCAAAAGATCGAAT	CTTGGCACGTGTGCG	CATGTGTTAGCTTTACGGCG	ATGTGG CAGACCCC
Glyntorhaestus sn	CCAAAAGATCGAAT	CCCGGCGCTTGTGCG	CATGTGTTA NGCTTTACGGCG	ATGTGG CAGACCCC
Perilissus alhitarsis	CCAAAAGATCGAAT	CCTGGCACGTGTGCG	CATGTGTCA CGCTTCACGGCG	ATGTGG CAGACCCC
Sympherta sn	CCAAAAGATCGAAT	TCTGGCACGTGTGCG	CATGTGCTA CGCTTCACGGCG	ATGCGG CAGACCCC
oynipheria op.				

Figure 4. Partial alignments (arrangements) of four parts of the 28S D2 rDNA gene for representatives of the Campopleginae, Cremastinae, Ctenopelmatinae, and Ophioninae (aligned by eye) showing molecular synapomorphies for Campopleginae (1 and 2) and Ophioninae (3 and 4). Fragment 1 corresponds to bases 11–24, fragment 2 to bases 47–62, fragment 3 to bases 203–225 (in box) and fragment 4 to bases 236 (in box) to 244 in the alignment shown in Belshaw et al. (1998, Figure 1).

Euurobracon Ashmead, in the Braconidae). Thus, while our data show convincingly that *Hellwigia* and *Skiapus* belong in the same monophyletic group as the Ophioninae, we remain cautious about whether one or both are derived within the Ophioninae or form a sister group to that subfamily.

Whereas the Anomaloninae are well characterized as a monophyletic group based on morphology (Gauld 1976, 1997), the 28S D2–3 rDNA gene fragment shows no unique synapomorphies (see Figure 4), and no obvious individual substitutions indicate a clear relationship with *Nonnus*, *Chriodes*, and *Klutiana*, though these genera were recovered either monophyletically or as a grade as the sister group of the Anomaloninae in the purely morphological analyses. However, in the simultaneous analyses (Figure 3) they showed a trend with increasing gap:change values from being a monophyletic sister group of the Anomaloninae+Ophioninae (Figure 3a), through a polyphyletic state (Figure 3b) to again forming a monophyletic group, but this time as a sister group of the clade comprising all the included taxa except for Banchinae and Tersilochinae (Figure 3c).

Nonnus, Chriodes, and *Klutiana* share a putatively synapomorphic, medially strongly incurved comb on the inner margin of the hind tibia (Table II: character 52; Figure 6, cf. Figure 5) and, within the Ophioniformes, the clavate fore and mid tibiae of the females (Table II: character 49). Nevertheless, despite the inclusion of these characters, they were

Figures 5–10. Scanning electron micrographs showing features of Campopleginae *sensu stricto* and Nesomesochorinae stat. rev. (5) *Echthronomas* sp. (Campopleginae) hind tibia and basitarsus inner aspect showing unmodified tibial comb. (6–7, 9–10) *Chriodes* sp.: (6) hind tibia and basitarsus inner aspect showing modified tibial comb with medially reduced setae; (7) face; (9) claw showing pecten; (10) propodeum showing areolation. (8) *Klutiana* sp., face.

only recovered as forming a monophyletic group in two of the three simultaneous analyses, thus there is only a weak signal in the combined data set that would support recognition of a single subfamily including Nonnus, Chriodes, and Klutiana. We therefore are here proposing that these be placed in two subfamily-level taxa, the Nonninae for Nonnus and the Nesomesochorinae for Chriodes and Klutiana. The Nesomesochorinae was originally proposed by Ashmead (1905) with type genus Nesomesochorus Ashmead (a junior objective synonym of Chriodes), and the Nonnini was proposed by Townes et al. (1961).

The Nesomesochorinae and Nonninae can be keyed out together, as the Nonnini, in Townes (1970, p 144) and are recognized by the reduced number of labial palp segments, in addition to the modified hind tibial comb (Table II: character 52). Chriodes and Klutiana have eyes that converge ventrally so that they are almost touching (Figures 7, 8), the claw is strongly pectinate but not to the apex (Figure 9), and the propodeum has an almost complete set of carinae (Figure 10). Nonnus has no especially distinctive morphological features, but they are large wasps with a long ovipositor and white-banded antennae (see Townes 1970, Figure 140). Despite the lack of "ophionoid facies", the Palaearctic genus Hellwigia is superficially very like other ophionines, except that it lacks the spurious vein in the fore wing. Its fore wing veins are characteristically sinuous and vein 2m-cu is more or less interstitial (see Townes 1970, Figure 142). Skiapus is a highly characteristic genus of medium-sized ichneumonids from Africa. The mandibles are highly aberrant (Figure 11) which are twisted and out-curved, the occipital carina is deeply indented medio-dorsally (Figure 12), the propodeum is very steep posteriorly with two complete transverse carinae located close to its anterior margin (Figure 13), the hind legs are especially long with very large coxae and all legs are strongly spinose (Figure 14). The hind coxa has a tooth ventrally (Figure 15) and the claws are strongly pectinate, though not to the apex and not sinuous as in other ophionines (Figure 16).

Finally, this study emphasizes the value of considering both molecular and morphological data in phylogeny reconstruction since both can provide convincing synapomorphies for groups. In the present example, only molecular data provide convincing evidence for monophyly of the Campopleginae (excluding Hellwigia, Skiapus, Nonnus, Chriodes, and Klutiana), while most support for the Anomaloninae comes from the morphological data with no molecular synapomorphies in the D2-3 28S rDNA region.

The nomenclatural changes being effected can be summarized thus:

CAMPOPLEGINAE

Campoplegoidae Förster, 1869. Type genus Campoplex Gravenhorst [misidentified]. Porizonoidae Förster, 1869. Type genus Porizon Fallén [?misidentified].

Limneriinae Szépligeti, 1911. Type genus Limnerium Ashmead (a junior synonym of Olesicampe Foerster).

Charopsinae Viereck, 1918. Type genus Charops Holmgren.

Cryptophioninae Viereck, 1918. Type genus Cryptophion Viereck.

Macrini Townes, 1971. Type genus Macrus Gravenhorst.

Included genera: the genera listed under Campopleginae by Yu and Horstmann 1997 and Wahl 1999 excluding Chriodes, Klutiana, Nonnus, Skiapus, and Hellwigia.

NESOMESOCHORINAE stat. rev.

Nesomesochorini Ashmead, 1905. Type genus Nesomesochorus Ashmead (a junior objective synonym of Chriodes Foerster).

Figures 11–16. Scanning electron micrographs showing features of *Skiapus* sp. (Ophioninae). (11) Front of head showing emarginate eyes and twisted mandibles. (12) Back of head showing medially strongly excavated occiput and deflected occipital carina. (13) Metanotum and propodeum showing two complete transverse carinae located close to anterior margin. (14) Tibia of mid-leg, oblique angle, showing strong spines. (15) Hind coxa showing tooth near base. (16) Claw showing pectination.

Mavandini Seyrig, 1935 [incorrectly formed stem]. Type genus *Mavandia* Seyrig (a junior synonym of *Chriodes*).

Included genera: Chriodes Förster, Klutiana Betrem.

NONNINAE stat. nov.

Nonnini Townes, 1961 (in Townes et al. 1961). Type genus Nonnus Cresson. Included genus: Nonnus Cresson.

OPHIONINAE

Ophionini Shuckard, 1840 (in Swainson and Shuckard 1840). Type genus Ophion Fabricius.

Hellwigioidae Foerster, 1869 stat. rev. Type genus Hellwigia Gravenhorst.

Enicospilini Townes, 1971. Type genus Enicospilus Stephens.

Included genera: *Hellwigia* Gravenhorst, *Skiapus* Morley and the genera listed under Ophioninae by Gauld 1985, Yu and Horstmann 1997, and Wahl 1999.

Acknowledgements

We are very grateful to the following for either supplying taxa for sequencing or for facilitating their collection: Hasan H. Basibuyuk, Yves Braet, Ong Pek Choo, Michel Cusson, Brian Fisher, Ian Gauld, Georgi Georgiev, Marc Kenis, Michael Kuhlman, C. L. Li, Carlos Lopez-Vaamonde, Andy Polaszek, Chris Raper, Sue Roberts, Mark Shaw, Rosie Trevellyan, and Graham Vick. We are grateful to Ellie Haine and Miharu Mori for help with sequencing and to Klaus Horstmann for identifying the specimen of *Campoplex deficiens*, to Sondra Ward for making the scanning electron micrographs and to Buntika Areekul for montaging the plates.

References

- Ashmead WH. 1905. Additions to the recorded Hymenopterous fauna of the Philippine Islands, with descriptions of new species. Proceedings of the United States National Museum 28:957–971.
- Belshaw R, Fitton MG, Herniou E, Gimeno C, Quicke DLJ. 1998. A phylogenetic reconstruction of the Ichneumonoidea (Hymenoptera) based on the D2 variable region of 28S ribosomal RNA. Systematic Entomology 23:109–123.
- Belshaw R, Lopez-Vaamonde C, Degerli N, Quicke DLJ. 2001. Paraphyletic taxa and taxonomic chaining: evaluating the classification of braconine wasps (Hymenoptera: Braconidae) using 28S D2–3 rDNA sequences and morphological characters. Biological Journal of the Linnean Society 73:411–424.
- Belshaw R, Quicke DLJ. 2002. Robustness of ancestral state estimates: evolution of life history strategy in ichneumonoid parasitoids. Systematic Biology 51:450–477.
- Broad GR, Quicke DLJ. 2000. The adaptive significance of host location by vibrational sounding in parasitoid wasps. Proceedings of the Royal Society (London) B 267:2403–2409.
- Carlson RW. 1979. Family Ichneumonidae. In: Krombein KV, Hurd PD, Smith DR, Burke BD, editors. Catalog of Hymenoptera in America north of Mexico. Volume 1. Washington: Smithsonian Institution Press. p 315–740.
- Dbar RS. 1993. [Host-parasite relations of subfamily Campopleginae (Hymenoptera, Ichneumonidae) and some aspects of their evolution]. Trudy Zoologicheskogo Instituta Leningrad 193:245–253. (Rus).
- Dowton M, Belshaw R, Austin AD, Quicke DLJ. 2002. Simultaneous molecular and morphological analysis of braconid relationships (Insecta: Hymenoptera: Braconidae) indicates independent mt-tRNA gene inversions within a single wasp family. Journal of Molecular Evolution 54:210–226.
- Foerster A. 1869. Synopsis der Familien und Gattungen der Ichneumonen. Verhandlungen des Naturhistorischen Vereins der Preussischen Rheinlande und Westfalens 25(1868):135–221.

- Gauld ID. 1976. The classification of the Anomaloninae (Hymenoptera: Ichneumonidae). Bulletin of the British Museum (Natural History), Entomology 33:1–135.
- Gauld ID. 1984. An introduction to the Ichneumonidae of Australia. London: British Museum (Natural History). 413 p.
- Gauld ID. 1985. The phylogeny, classification and evolution of parasitic wasps of the subfamily Ophioninae (Ichneumonidae). Bulletin of the British Museum (Natural History), Entomology 51:61–185.
- Gauld ID. 1997. Ichneumonidae of Costa Rica, 2. Memoirs of the American Entomological Institute 57:1–485.
- Gauld ID, Bolton B, editors. 1996. The Hymenoptera. Oxford: Oxford University Press. 332 p.
- Gauld ID, Mound LA. 1982. Homoplasy and the delineation of holophyletic genera in some insect groups. Systematic Entomology 7:73–86.
- Gauthier N, LaSalle J, Quicke DLJ, Godfray HCJ. 2000. Phylogeny of Eulophidae (Hymenoptera: Chalcidoidea), with a reclassification of Eulophinae and the recognition that Elasmidae are derived eulophids. Systematic Entomology 25:521–539.
- Gladstein D, Wheeler WC. 2001. POY [program and documentation online]. New York: American Museum of Natural History. ftp://ftp.amnh.org/pub/molecular/poy/.
- Goulet H, Huber JT, editors. 1993. Hymenoptera of the world: an identification guide to families. Ottawa: Agriculture Canada.
- Horstmann K. 1969. Revision der Hellwigiinae Foerster (Hymenoptera, Ichneumonidae). Mitteilungen der Deutschen Entomologischen Gesellschaft 28(3):30–32.
- Kusigemati K. 1983. A revision of the tribe Nonnini of Formosa and Japan (Hymenoptera: Ichneumonidae, Porizontinae). Memoirs of the Kagoshima University Research Center for the South Pacific 4:163–187.
- Miah MI. 1998. Phylogeny of genera of Campopleginae (Ichneumonidae) [PhD thesis]. London: University of London.
- Miah MI, Bhuyia BA. 2001. The relationships of the subfamily Campopleginae (Hymenoptera, Ichneumonidae) with its related subfamilies in cladistic assessment. Proceedings of the Zoological Society (Calcutta) 54:27–37.
- Pampel W. 1914. Die weiblichen Geschlectsorgane der Ichneumoniden. Zeitschrift für Wissenschaftliche Zoologie (Leipzig) 108:290–357.
- Quicke DLJ, Basibuyuk HH, Fitton MG, Rasnitsyn AP. 1999. Morphological, palaeontological and molecular aspects of ichneumonoid phylogeny (Hymenoptera, Insecta). Zoologica Scripta 28:175–202.
- Quicke DLJ, Fitton MG, Notton DG, Belshaw R, Broad GR, Dolphin K. 2000. Phylogeny of the Ichneumonidae (Hymenoptera): a simultaneous molecular and morphological analysis. In: Austin ADDowton M, editors. Hymenoptera: evolution, biodiversity and biological control. Canberra: CSIRO. p 74–83.
- Sanborne PM. 1986. On the correct application of *Rhimphoctona* Foerster (Hymenoptera: Ichneumonidae). Contributions of the American Entomological Institute 22:1–6.
- Seyrig A. 1935. Hymenoptera 2, Ichneumonidae. Mission Scientifique de l'Omo 3(18):1-100.
- Short JRT. 1978. The final larval instars of the Ichneumonidae. Memoirs of the American Entomological Institute 25:1–508.
- Swainson W, Shuckard WE. 1840. The cabinet Cyclopedia: on the history and natural arrangement of insects. London: Longman, Orme, Brown, Green and Longmans.
- Swofford DL. 1998. PAUP*: phylogenetic analysis using parsimony (* and other methods). Version 4.0 (beta 8). Sunderland (MA): Sinauer Associates.
- Szépligeti GV. 1911. Ichneumonidae. In: Wytsman P, editor. Genera Insectorum 114:1-100.
- Townes H. 1969. The genera of Ichneumonidae, Part 1. Ephialtinae to Agriotypinae. Memoirs of the American Entomological Institute 11:1–300.
- Townes H. 1970. The genera of Ichneumonidae, Part 3. Banchinae, Scolobatinae & Porizontinae. Memoirs of the American Entomological Institute 13:1–307.
- Townes H. 1971. The genera of Ichneumonidae, Part 4. Cremastinae to Diplazontinae. Memoirs of the American Entomological Institute 17:1–372.
- Townes H, Momoi S, Townes M. 1965. A catalogue and reclassification of eastern Palearctic Ichneumonidae. Memoirs of the American Entomological Institute 5:1–661.
- Townes H, Townes M, Gupta VK. 1961. Catalogue and reclassification of the Indo-Australian Ichneumonidae. Memoirs of the American Entomological Institute 1:1–522.
- Viereck HL. 1918. A list of families and subfamilies of ichneumon-flies or the superfamily Ichneumonoidea (Hymenoptera). Proceedings of the Biological Society of Washington 31:69–74.
- Wahl DB. 1990. A review of the mature larvae of Diplazontinae, with notes on larvae of Acaenitinae and Orthocentrinae and proposal of two new subfamilies (Insecta: Hymenoptera, Ichneumonidae). Journal of Natural History 24:27–52.

- Wahl DB. 1991. The status of *Rhimphoctona*, with special reference to the higher categories within Campopleginae and the relationships of the subfamily (Hymenoptera: Ichneumonidae). Transactions of the American Entomological Society 117:193–213.
- Wahl D. 1999. Classification and systematics of the Ichneumonidae (Hymenoptera) [online]. http:// iris.biosci.ohio-state.edu/catalogs/ichneumonids/campopleginae_genera.html.

Wheeler WC. 1996. Optimization alignment: the end to multiple alignment in phylogenetics? Cladistics 12:1-9.

Yu DS, Horstmann K. 1997. A catalogue of world Ichneumonidae (Hymenoptera). Memoirs of the American Entomological Institute 58:1–1558.

Appendix: Morphological data set

Polymorphisms are abbreviated as follows: a=(0,1); b=(1,2); c=(0,1,2).

Afrophion hynnis	00010112101000111110111101111121011?2110011110001100200000012?????
Allophrys	100000001011011111010?1010000200110????1?0120000000200000011?????
Alophophion	000101110010001101101112000010121011?21100111100011002000000122???1
Anomalon	0110000010001010011010021?1101120010?1111?0100000000
Anoncus	0000010010000011111010100000111010?2010001100100000211110002?????
Banchus volutatorius	00000100110001110111112010?0102100?0211000110000100021111000111101
Barylypa	011000001010111001101101111101221011?1110001000
Barytatocophalus mocsaryi	000?01010010001101101011111020011?2110011100001100200000012?????
Bathyplectes	011000001100001011101101001000000a?000100??200100?00210000?02?0121
Campoplex deficiens	011???00010001111111102001000110010?1010101200000?00110100001?????
Casinara petiolaris	0111010ba0000a10111101?20aa001aca00?11a10101200000?0011000001b10121
Charops	011010021000001011101101011101021010?11100012??000?00210000002?0121
Chriodes	01010101200a1010?000010200000112000?00010011100010?10011000111?????
Cremastus spectator	000001000100011001101102001000010010?0000001100000001210011111?0111
Cryptophion manueli	010101010000110100001010?100112100?12110101100000?00210110012?????
Cymodusopsis	01100101100001101111110200100100?11110001200000?0020000001?0121
Diadegma mollipla	011001000100001011?111?100000010100?11110101200000?0021011000b?0121
Dicamptus seyrigi	001101121010021101101001111120011?2110011110001100200000012?????
Dusona	01111102001000101111010100110102100?02110001000
Echthronomas facialis	0111010101??00?01111110100100101000?101101
Enicospilus ramidulus	000101120010021111101101001111020011?2110011111001100
Eremotylus marginatus	000101120010001111101102001111221011?2110011010001100200000012?????
Eriborus terebrans	0110010a0100011111111102000001021010?2110101200000?00210110002?0121
Gravenhorstia (Erigorgus)	010001001010111001101102111101221011?2110001000
Euryophion latipennis	000100100010001111101102010111220011?21100?1010001100200000012?1111
Euryproctus numidicus	000011000100010011010?101000111?00?12110001100100000211111002100?1
Glypta altamirai	0000000110001100111112010001020010?21100011000000021111000010101
Glyptorhaestus	00001000010000111110111100000021000?12010001100101000211111002?00?1
Gonotypus melanostoma	011???0001000011111111101000020000?01010001200000?00210?10001?????
Habronyx	010?010120101110011011?2111001221011?2110001000
Hellwigia obscura	00100102001a020111101102011101021010?21100?0000000?00200001012?????
Hyposoter didymator	01100001010001101111110100100102100?10110101200000?00210110012?0121
Klutiana	00000101201a101010000102000001220010?0010001200010?10011000001?????
Lathrostizus lugens	01100100010000111111110100100011100?11110101200000?00210110001?0121
Laticoleus infumatus	000101121010001111101111001111220011?2110011210001100200000012?????
Leptocampoplex cremastoides	011???000100001?11111101001000210010?101??01200000?00110110001?????
Leptophion	000101111110001111101001111120011?2110011210001100200000012?????
Melalophacharops	0110010101000010110111?2001001111010?1111?01200000?0021011000??????
Meniscomorpha zacasta	000001000100011001111112010001121010?2110001100000000
Nonnus biannulatus	00110100101110110010010200010102000?02110001000
Olesicampe	0010000001000011111110100100111100?10010101200000?00210110000?0121
Orthopelma	0100000011000200110100?2000000201010?0011?01200000000
Perilissus albitarsis	00000100a1100010111010010000011100?1211000110010000021111100220111

Phobocampe	01100000110000111111110100100021000?1b010101200000?00200100002?0121
Rhimphoctona grandis	01110100010000111111110100100112100?01110001100100?00211110011?0121
Rhynchophion flammipennis	000110010010001111101102011111020011?211001100
Scirtetes robustus	011001001100001110111101011000110010?1010101200000?00210010001?????
Skiapus	01010102111a111011101101000102020011?211001010010
Stethantyx	100000000011011010010?1010000200010?0001?01200000000
Sympherta	00000100010000101110101101000121100?12110001100100000211111002?00?1
Syzeuctus	00000100010001100111111201010102100?12110001100000000
Temelucha	000001000110001011101102001000211010?00000011000000012100111110111
Tersilochus heterocerus	100000001011011011010?1010000200110?0001?01200000000
Thyreodon laticinctus	01010001001001100110111201111121011?211001100
Tranosema rostrale	0110010000001101111110100100021000?10010a01200000?00211110001?0121
Trichomma	011001012010101001101102111001220011?0110001000
Venturia ocypeta	01100100000001010110100100111100??0010101200000?0021000001110121
Xanthocampoplex	0110010aaa100010111111010110010b100?12110101100000?0020001000b?a121