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ABSTRACT

In this paper we address the benefit of observing a signal of
opportunity for mobile terminal positioning. In an exemplary
environment we arrange three mobile terminals in an equilat-
eral triangle. These mobile terminals determine their position
relatively to each other by transmitting and receiving mobile
radio signals. In addition they observe a signal of opportunity
which is emitted from a transmitter. In our case this signal is
a single carrier. We evaluate the performance improvement
for positioning of the mobile terminals when observing such
a signal of opportunity. The evaluation is based on the cal-
culation of the Cramér-Rao lower bound. For an exemplary
environment with three mobile terminals and one signal of
opportunity a performance gain of up to ≈ 38.8 % can be ex-
pected theoretically.

Index Terms— cooperative positioning, signals of oppor-
tunity, Cramér-Rao lower bound, Fisher information

1. INTRODUCTION

The availability of position information at wireless mobile
terminals has become a key feature in recent years to drive
location and context aware services. Providing position in-
formation anywhere with sufficient accuracy is a challenging
task. Global satellite navigation systems like the US Global
Positioning System (GPS) or the European satellite naviga-
tion system Galileo provide accurate position information in
suitable environments [1]. However, in critical environments
like indoors such systems provide a poor performance due
to weak signals, multipath or non-line-of-sight signal propa-
gation. Therefore, it is desirable to exploit hybrid or multi-
sensor positioning approaches which can complement each
other in different situations [2, 3]. An obvious alternative
is to use a wireless communications network for positioning
[4] since they provide good coverage with broadband signals
like the primary and secondary synchronization signals (PSS,
SSS) or even the positioning reference signal (PRS) in the
3GPP-LTE1 standard [5]. Even external systems like digital
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terrestrial video broadcasting are capable of improving posi-
tioning performance as long as their signals can be received
by the mobile device [6]. Generalizing this approach of ob-
serving signals for positioning purposes leads to the concept
of cognitive positioning or positioning with signals of oppor-
tunity (SoO) [7]. For positioning the transmitter (source) of
such a SoO can be considered as a landmark.

In this paper we aim to evaluate the benefit of a SoO for
mobile radio positioning in an exemplary scenario. Here, mo-
bile terminals (MTs) in a 2-dimensional area cooperatively lo-
cate each other and exploit an additional SoO observation for
improving positioning performance. The MTs can be consid-
ered as an array of antennas for receiving a SoO, which is a
single carrier in our case, Different to the concepts of antenna
arrays [8] or MIMO radar [9], we are not primarily interested
in the localization of the SoO source. Instead, we aim to im-
prove the positioning performance of the MTs. For evaluating
the achievable performance improvement, we derive and cal-
culate the Cramér-Rao lower bound for this kind of scenarios.

2. PREREQUISITES

2.1. Environment

We consider a 2D environment as shown in Fig. 1. Mobile
transceivers (MT) transmit signals sp(t). By observing these
signals at adjacent MTs the spatial distance (the range) be-
tween the MTs can be determined. In general we assume that
the MTs are not synchronized, i.e., they do not have a com-
mon time base. For this reason we include the unknown offset
of the MTs’ time bases Tp to a global time base as a further
coordinate. So we generally have to estimate both spatial and
temporal parameters. Note we do not consider spatially fixed
mobile transmitters like base stations in a mobile communica-
tions system, which inherently could serve as a global spatial
and temporal reference. Instead we are going to define a local
coordinate system later on by fixing some of the MTs’ pa-
rameters. We further assume that there is a transmitter (TX),
emitting a signal s0(t). The MTs exploit this signal of oppor-
tunity (SoO) to improve their positioning performance. The
estimation of the unknown spatial and temporal parameters
can be performed centrally by providing signal observations
or sufficient statistics about these parameters to a central unit,
which calculates the parameter estimates jointly. Another ap-
proach is to estimate the unknown parameters decentrally and
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Fig. 1. Three mobile radio transceivers (MT) in an uniform
circular array arrangement. The MTs cooperatively and rela-
tively locate each other. For proving their positioning perfor-
mance the MTs observe a signal of opportunity, transmitted
from a source TX.

iteratively at each MT based on signal observations and esti-
mates provided by adjacent MTs. In both cases, cooperation
between the MTs is required for exchanging observed or al-
ready processed data.

2.2. Signal Model

2.2.1. Generic Description

With complex valued baseband signals sp(t), transmitted at
the transceivers MTp (p = 1, 2, . . .) or the SoO source TX
(p = 0), we obtain the time signal

rq,p(t) = sp

t − d̃q,p

c0

︸         ︷︷         ︸
def
= sq,p(t)

+nq,p(t) (1)

at transceiver MTq. We usually sample these signals at time
instances t = k T . The term nq,p(k T ) = nq,p(k) is complex val-
ued additive white Gaussian noise (AWGN) with zero mean
and variance

E
{∣∣∣nq,p(k)

∣∣∣2} = σ2
q,p. (2)

As shown in Eq. (1) signal sp transmitted at MTp arrives at re-
ceiver MTq with a delay which corresponds to a pseudo range

d̃q,p =

√
(xq − xp)2 + (yq − yp)2︸                          ︷︷                          ︸

def
= dq,p

Euclidean TX-RX distance

+ c0 (Tq − Tp),︸         ︷︷         ︸
bias due to

time base offsets

(3)

where c0 is the speed of light. The pseudo range consists
of the Euclidean transmitter-receiver distance and a bias term
which is caused by different time base offsets Tp and Tq at
the transmitter and the receiver of the signal. With the signal
model in Eq. (1) we assume that signals observed from dif-
ferent transmitters do not interfere each other, meaning that
we perfectly can separate these signals at a receiver. This
can be achieved by an appropriate multiplex of these signals

in time, frequency or code domain. The design of the sig-
nals sp(t), p = 1, 2, . . . transmitted from transceivers MTp is
not within the scope of this paper. Instead we are going to
use a real valued pseudo range signal model, which will fol-
low from the derivation of the Fisher information later on in
Sec. 3.1.

2.2.2. The Signal of Opportunity

For the SoO, transmitted from TX, we consider a real valued
waveform s0(t) =

√
2PTX cos(2π fS t) with a frequency fS

and TX power PTX. This signal arrives at the MTs with dif-
ferent delays which correspond to the pseudo range defined
in Eq. (3). At transceiver MTq we obtain the bandpass signal

r̆q,0(t) =
√

Pq cos
2π fS

t − d̃q,0

c0

 + nq,0(t) (4)

with a real valued AWGN process having an autocorrelation
function of N0

2 δ(τ). The received power Pq is subject to a sig-
nal propagation loss between the SoO source and transceiver
MTq, and therefore, dependent on the distance between them.
For our investigations, however, we do not exploit this depen-
dency for the estimation of the distance between the MT and
the SoS transmitter. Since we are interested in the phases of
these observed signals we describe them in the complex base-
band and get

rq,0 =
√

Pq exp
j 2π fS

− d̃q,0

c0

 + nq,0 (5)

at transceiver MTq. Similar to Eq. (1) we define

sq,0(t) =
√

Pq exp
(
j 2π fS t

)
. (6)

The term nq,0 is a complex valued AWGN sample with zero
mean and variance σ2

q,0. We observe such a constant phasor
by observing one period with duration TS = 1

fS
of the wave-

form in Eq. (4).

3. FISHER INFORMATION FOR SIGNAL
PARAMETER ESTIMATION IN COMPLEX

GAUSSIAN NOISE

The variance of unbiased signal parameter estimates is
bounded by the Cramér-Rao lower bound (CRLB), which is
obtained from inverting the corresponding Fisher information
matrix (FIM). The FIM components at row u and column v
for signal parameter estimation in complex Gaussian noise
are [10, Ch. 15.7]

[F(α)]u,v = tr
[
C−1

r (α)
∂Cr(α)
∂αu

C−1
r (α)

∂Cr(α)
∂αv

]
+ 2 Re

[
∂ sH(α)
∂αu

C−1
r (α)

∂ s(α)
∂αv

]
.

(7)

The subscript (·)H denotes the Hermitian of a vector or ma-
trix. For the equation above, we collect all the received sig-
nal samples rq,p(k T ), indexed by p, q and k, in a vector r
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and their respective mean values sp

(
k T − d̃q,p

c0

)
in vector s.

With that, Cr(α) denotes the covariance matrix of r. Vector
α is composed of the unknown parameters which we wish
to estimate. For our exemplary scenario these parameters
are the spatial and temporal coordinates of the MTs, i.e.,
α =

[
x2,T2, x3, y3,T3

]T. Note the parameters x1, y1, y2 and
T1 are fixed (known) in order to define a spatial and temporal
coordinate system.

3.1. Uncorrelated Gaussian Noise

In our case the covariance matrix does not depend on the pa-
rameter vector α. The first term in Eq. (7) (the trace term)
vanishes for this reason. Further, we consider uncorrelated
Gaussian noise, which results in a diagonal covariance matrix
Cr for the observed signal samples. With these assumptions,
Eq. (7) modifies to

[F(α)]u,v =

2 Re


∑
q,p

1
σ2

q,p

∑
k

∂ s∗p
(
k T − d̃q,p

c0

)
∂αu

∂ sp

(
k T − d̃q,p

c0

)
∂αv

 (8)

with complex AWGN variances σ2
q,p according to Eq. (2). For

the calculation of the FIM according to Eq. (8) we need the
derivatives of the observed signal with respect to the unknown
parameters α, which we wish to estimate. Note that our signal
defined in Eq. (1) depends on the parameters α solely through
the pseudo range introduced in Eq. (3). With this structure we
get

∂ sp

(
k T − d̃q,p

c0

)
∂αu

= −
1
c0

ṡq,p(k T )
∂ d̃q,p

∂αu
(9)

by applying the chain rule. For convenience we denote
∂
∂t s(t) = ṡ(t). We insert (9) into (8) and obtain

[F(α)]u,v =
∑
q,p

∂ d̃q,p

∂αu

 2
σ2

q,p c2
0

∑
k

∣∣∣ṡq,p(k T )
∣∣∣2︸                         ︷︷                         ︸

Bσ̃−2
q,p

∂ d̃q,p

∂αv
. (10)

With the gradient for M unknown parameters ∇α =[
∂
∂ α1

, ∂
∂ α2

, . . . ∂
∂ αM

]T
we can express the FIM as

F(α) =
∑
q,p

1
σ̃2

q,p
∇αd̃q,p ∇

T
αd̃q,p (11)

For L pseudo range observations, indexed by p and q, we col-
lect the gradient vectors ∇αd̃q,p in an M×L matrix G, which is
called the geometry matrix. If we arrange the corresponding
pseudo range variances σ̃2

q,p in an L× L diagonal matrix Σ we
can rewrite Eq. (11) in matrix form as F(α) = GΣ−1 GT and
get the corresponding Cramér-Rao lower bound as

CRLB(α) =
(
GΣ−1 GT

)−1
. (12)

For the special case where the diagonal elements in Σ are
equal, i.e., Σ = σ2I, Eq. (12) simplifies to

CRLB(α) = σ2
(
G GT

)−1
. (13)

The diagonal elements of matrix CRLB(α) provide the lower
bound on the variance of an unbiased estimator for the corre-
sponding parameters. Matrix

(
G GT

)
is only dependent on the

geometrical constellation of the MTs and TX to each other.

3.2. The Geometry Matrix

For calculation of the geometry matrix we have to derive the
pseudo ranges d̃q,p with respect to the unknown parameters
according to Eq. (11). For the derivatives with respect to the
spatial parameters we get

∂

∂xq
d̃q,p =

xq − xp

dq,p

∂

∂yq
d̃q,p =

yq − yp

dq,p
(14a)

∂

∂xp
d̃q,p =

xp − xq

dq,p

∂

∂yp
d̃q,p =

yp − yq

dq,p
(14b)

with the true Euclidean distance dq,p = dp,q =√
(xq − xp)2 + (yq − yp)2 between transmitter p and receiver

q. The derivatives with respect to the time base offsets are

∂

∂Tq
d̃q,p = c0

∂

∂Tp
d̃q,p = −c0 (15)

3.3. Pseudo Range Signal Model
The result of Eq. (10) corresponds to a real valued Gaussian
signal model for the pseudo range observations

d̆q,p = d̃q,p + ñq,p, (16)

where ñq,p is real AWGN with zero mean and variance

E
{
ñ2

q,p

}
= σ̃2

q,p =

 2
σ2

q,p c2
0

∑
k

∣∣∣ṡq,p(k T )
∣∣∣2−1

. (17)

We apply this model directly to the signals transmitted from
the mobile transceivers MTp, meaning that a signal design
yields a variance of σ̃2

q,p for pseudo range estimation between
the MTs.

For the SoO we have one complex valued sample rq,0 ac-
cording to Eq. (5). Inserting this into Eq. (17) yields

E
{
ñ2

q,0

}
= σ̃2

q,0 =
c2

0 σ
2
q,0

8π2 f 2
S Pq

=
λ2

S

8π2 SNR−1
q (18)

with wavelength λS =
c0
fS

and the signal-to-noise ratio SNRq =
Pq

σ2
q,0

at transceiver MTq. With TX power PTX we can expect a

receiver power level of

Pq = PTX GTXGRX

(
4π dq,0

λS

)−2

(19)
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for free space signal propagation [11]. GTX and GRX de-
note the antenna gains at the TX and RX side respectively.
With the Boltzmann constant kB = 1.381 × 10−23 Ws/K and
a noise temperature T = 300 K we get a noise power of
σ2

q,0 = kB T BS with bandwidth BS = 1
TS

which is the in-
verse of the SoO period duration. Inserting this together with
Eq. (19) into Eq. (18) yields

σ̃q,0 = dq,0

√
2 kB T BS

PTX GTXGRX
(20)

for the pseudo range SoO model.

4. RESULTS

We refer to Fig. 1 and define the origin of a local 2D coordi-
nate system at the position of MT1. Further, we choose the
time base of MT1 as our local temporal reference. MT2 is lo-
cated on the positive x-axis. The position of MT3 is chosen
such that the three MTs form an equilateral triangle with dis-
tance dMT, i.e., the MTs form an uniform circular array with
three elements as shown in Fig. 1. Thus, we set[
x1
y1

]
=

[
0
0

]
,

[
x2
y2

]
= dMT

[
1
0

]
and

[
x3
y3

]
= dMT

[ 1
2√
3

2

]
(21)

as ground truth positions of the MTs. With the definition of
the spatial and temporal reference above we can fix the esti-
mates x̂1 = 0, ŷ1 = 0, T̂1 = 0 and ŷ2 = 0. Subsequently, we
evaluate the position accuracy of MT3.

4.1. Reference

As reference scenario we consider the arrangement of
the MTs as described above without the SoO source
TX. Thus, the unknown parameters to estimate are α =[
x2,T2, x3, y3,T3

]T, where at the end we are interested in the
estimation performance for the position coordinates x3, y3 of
MT3. With 5 unknowns and 6 possible pseudo range observa-
tions d̃2,1, . . . , d̃2,3 the 5×6 geometry matrix for this reference
scenario is

G =
(
∇αd̃2,1, ∇αd̃3,1, ∇αd̃1,2, ∇αd̃3,2, ∇αd̃1,3, ∇αd̃2,3,

)
.

(22)
For the signals transmitted from the MTs we use the pseudo
range signal model according to Eqs. (16) and (17) with equal
variance σ̃2

q,p = σ2
MT. Thus, we calculate the Cramér-Rao

lower bound according to Eq. (13). The square root of the sum
of the 3rd and 4th diagonal element of that matrix yields the
Cramér-Rao lower bound for the position root mean square
error (RMSE) of MT3 as

RMSEMT3 =

√
RMSE2

x̂3
+ RMSE2

ŷ3

≥ σMT

√[(
G GT)−1

]
3,3

+
[(

G GT)−1
]
4,4

= σMT

√
1.06072 + 0.61242

= 1.225 × σMT =
√

CRLBref.

(23)

Note the result above is only dependent on the pseudo range
noise variance σ2

MT and the geometry of the MTs. It is invari-
ant with respect to a scale factor, e.g., dMT in Eq. (21). We
use this result as a reference in order to assess the positioning
performance improvement when introducing a SoO source.

4.2. Positioning using a Signal of Opportunity

As a next step we introduce an additional SoO source TX. We
assume that we know the coordinates of TX but not its local
time base offset TS. Thus, the new vector of unknown param-
eters is α =

[
x2,T2, x3, y3,T3,T0

]T and extended by T0 com-
pared to our reference scenario. We calculate the CRLB, in
particular its square root

√
CRLBMT3 , according to Eq. (12),

where we focus on the position parameters of MT3 similar
to Eq. (23). The diagonal matrix Σ in this case consists of
pseudo range variances σ̃2

q,p = σ2
MT for the observation of

signals transmitted from MTs and σ̃2
q,0 = σ2

S for the SoO.
Fig. 2(a) shows the achievable gain

CRLBgain = 1 −

√
CRLBMT3

CRLBref
(24)

in percent for σMT = 1 m versus the location of the SoO
source TX in a 2D area. The pseudo range variance for SoO
observations is σS = 1 m and independent of the distance be-
tween TX and MTs for the moment. It should be mentioned
that the achievable gain for this example depends only on the
ratio between the pseudo range variances σMT and σS. If both
variances are equal, the achievable gain in positioning accu-
racy is ≈ 17.2 %. This gain vanishes as σS � σMT.

To assess the maximum achievable gain for this example
we let σS � σMT, i.e., σS → 0. Fig. 2(b) shows the corre-
sponding result. We observe a maximum achievable gain of
≈ 38.8 %. The gain is higher if TX is located horizontally to
MT3. This can be explained from the constellation of the MTs
and TX itself. MT1 and MT2 are located south to MT3, and
therefore, provide higher accuracy in vertical direction for po-
sitioning of MT3. Thus an additional source can improve the
positioning performance of MT3 compared to the reference
scenario if it is located such that it improves in particular the
horizontal positioning performance of MT3.

We now consider the case where σS depends on the dis-
tance between TX and the MTs due to signal propagation
loss. As already mentioned, the MTs form a uniform cir-
cular array with element distance dMT = 10 m. We choose
this distance such that it is half the wavelength of the ob-
served SoO carrier. Thus the period duration of our SoO is
TS =

λS
c0

= 2 dMT
c0

= 66.7 ns, which corresponds to a carrier
frequency of BS = 15 MHz. We choose the parameters in
Eq. (20) such that σ̃q,0 = 1 m at a reference distance of 50 m.
Assuming free space signal propagation and isotropic antenna
gains of GTX = GRX = 1, this is already achieved for a TX
power of

PTX = d2
q,0

2 kB T BS

σ̃2
q,0 GTXGRX

= −65 dBm. (25)
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(a) σMT = 1 m, σS = 1 m (b) σMT = 1 m, σS → 0 (c) σMT = 1 m, σS = 1 m at a distance of 50 m, the
SoO is subject to free space loss

Fig. 2. Gain in positioning accuracy in percent for MT3, shown in different colors, versus all positions of the SoO source TX in
a 2D area.

Fig. 2(c) shows the corresponding results, where we can ob-
serve that the gain achieves the asymptotic gain (c.f. Fig. 2(b))
as the SoO source TX gets closer to the MTs with respect to
the reference distance (50 m). As the MT-TX distances in-
crease, σS � σMT and the achievable gain vanishes. The
maximum gain for this example is ≈ 38.0 %.

5. CONCLUSIONS

In this paper we have exemplarily evaluated the benefit of a
signal of opportunity for mobile terminal positioning. For this
case we have derived the appropriate form of the Cramér-Rao
lower bound. On that basis we have calculated the perfor-
mance gains which can be expected theoretically. In the con-
sidered scenario three MTs are arranged in a equilateral tri-
angle and observe a single carrier, transmitted from a SoO
source with known position. By observing this signal of
opportunity the Cramér-Rao lower bound predicts a perfor-
mance gain of up to ≈ 38.8 % for this example. Of further
interest are the evaluation of the performance gains with an
increasing number of observed SoOs as well as relaxing the
assumption of known SoO source positions.
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