Dataset Open Access

SMAP-HydroBlocks: Hyper-resolution satellite-based soil moisture over the continental United States

Noemi Vergopolan; Nathaniel W. Chaney; Ming Pan; Justin Sheffield; Hylke E. Beck; Craig R. Ferguson; Laura Torres-Rojas; Eric F. Wood


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/4b9f2e78-8b40-44fa-8f9a-c3469cdd9ee9/SMAP-HB_1km_6h.zip"
      }, 
      "checksum": "md5:15b3a8c7632c013b998c006e1b5b68bb", 
      "bucket": "4b9f2e78-8b40-44fa-8f9a-c3469cdd9ee9", 
      "key": "SMAP-HB_1km_6h.zip", 
      "type": "zip", 
      "size": 31516251388
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/4b9f2e78-8b40-44fa-8f9a-c3469cdd9ee9/SMAP-HB_hru_6h.zip"
      }, 
      "checksum": "md5:86636c9c54b084643c6bfe2e8b14abc9", 
      "bucket": "4b9f2e78-8b40-44fa-8f9a-c3469cdd9ee9", 
      "key": "SMAP-HB_hru_6h.zip", 
      "type": "zip", 
      "size": 33791914360
    }
  ], 
  "owners": [
    143909
  ], 
  "doi": "10.5281/zenodo.5206725", 
  "stats": {
    "version_unique_downloads": 212.0, 
    "unique_views": 333.0, 
    "views": 405.0, 
    "version_views": 672.0, 
    "unique_downloads": 114.0, 
    "version_unique_views": 535.0, 
    "volume": 32275272137057.0, 
    "version_downloads": 1311.0, 
    "downloads": 1018.0, 
    "version_volume": 32437305612929.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.5206725", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.4441211", 
    "bucket": "https://zenodo.org/api/files/4b9f2e78-8b40-44fa-8f9a-c3469cdd9ee9", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.4441211.svg", 
    "html": "https://zenodo.org/record/5206725", 
    "latest_html": "https://zenodo.org/record/5206725", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.5206725.svg", 
    "latest": "https://zenodo.org/api/records/5206725"
  }, 
  "conceptdoi": "10.5281/zenodo.4441211", 
  "created": "2021-08-22T04:07:37.042583+00:00", 
  "updated": "2021-10-12T14:30:29.197411+00:00", 
  "conceptrecid": "4441211", 
  "revision": 8, 
  "id": 5206725, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.5206725", 
    "description": "<p><a href=\"https://waterai.earth/smaphb/\">SMAP-HydroBlocks (SMAP-HB)</a>&nbsp;is a hyper-resolution satellite-based surface soil moisture product that combines NASA&#39;s Soil Moisture Active-Passive (SMAP) L3 Enhance product, hyper-resolution land surface modeling, radiative transfer modeling, machine learning, and in-situ observations. The dataset was developed over the continental United States at 30-m 6-hourly resolution (2015&ndash;2019), and it reports the top 5-cm surface soil moisture in volumetric units (m3/m3).</p>\n\n<p>This repository contains the following two versions of the SMAP-HydroBlocks dataset:</p>\n\n<ol>\n\t<li><strong>SMAP-HB_hru_6h.zip</strong>: SMAP-HydroBlocks data in the Hydrological Response Unit (HRU) space. Storing the data in the HRU space enables the entire 30-m 6-h dataset to be compressed to 33.8 GB. A python script and instructions to post-process and remap the data from the HRU-space into geographic coordinates (latitude, longitude) is provided at <a href=\"https://github.com/NoemiVergopolan/SMAP-HydroBlocks_postprocessing\">GitHub</a>. After post-processed, files are stored in netCDF4 format with a Plate Carr&eacute;e projection.</li>\n\t<li><strong>SMAP-HB_1km_6h.zip</strong>: SMAP-HydroBlocks data at 1-km 6-h resolution. This aggregated version is already post-processed, and thus it is already in geographic coordinates (latitude, longitude), stored in netCDF4 format, with a Plate Carr&eacute;e projection, and comprising 31.5 GB of data.&nbsp;</li>\n</ol>\n\n<p>Different subsets of the original dataset can be made available on request from Noemi Vergopolan (noemi.v.rocha@gmail.com). Data visualization, updates, and more information is available at <a href=\"http://waterai.earth/smaphb/\">https://waterai.earth/smaphb/</a>&nbsp;</p>\n\n<p>&nbsp;</p>\n\n<p>Please cite the following paper when using the dataset in any publication:</p>\n\n<p>Vergopolan, N., Chaney, N. W., Beck, H. E., Pan, M., Sheffield, J., Chan, S., &amp; Wood, E. F. (2020). Combining hyper-resolution land surface modeling with SMAP brightness temperatures to obtain 30-m soil moisture estimates. Remote Sensing of Environment, 242, 111740. <a href=\"https://doi.org/10.1016/j.rse.2020.111740\">https://doi.org/10.1016/j.rse.2020.111740</a></p>\n\n<p>Vergopolan, N., Chaney, N.W., Pan, M.&nbsp;<em>et al.</em>&nbsp;SMAP-HydroBlocks, a 30-m satellite-based soil moisture dataset for the conterminous US.&nbsp;<em>Sci Data</em>&nbsp;<strong>8,&nbsp;</strong>264 (2021). <a href=\"https://doi.org/10.1038/s41597-021-01050-2\">https://doi.org/10.1038/s41597-021-01050-2</a></p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "SMAP-HydroBlocks: Hyper-resolution satellite-based soil moisture over the continental United States", 
    "relations": {
      "version": [
        {
          "count": 2, 
          "index": 1, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "4441211"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "5206725"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "remote-sensing"
      }
    ], 
    "version": "1.1", 
    "keywords": [
      "SMAP, HydroBlocks, hyper-resolution, soil moisture, hydrology, remote sensing, satellite, machine learning"
    ], 
    "publication_date": "2021-08-18", 
    "creators": [
      {
        "orcid": "0000-0002-7298-0509", 
        "affiliation": "Department of Civil and Environmental Engineering, Princeton University", 
        "name": "Noemi Vergopolan"
      }, 
      {
        "affiliation": "Department of Civil and Environmental Engineering, Duke University", 
        "name": "Nathaniel W. Chaney"
      }, 
      {
        "affiliation": "Department of Civil and Environmental Engineering, Princeton University", 
        "name": "Ming Pan"
      }, 
      {
        "affiliation": "School of Geography and Environmental Science, Southampton University", 
        "name": "Justin Sheffield"
      }, 
      {
        "affiliation": "Department of Civil and Environmental Engineering, Princeton University", 
        "name": "Hylke E. Beck"
      }, 
      {
        "affiliation": "Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany", 
        "name": "Craig R. Ferguson"
      }, 
      {
        "affiliation": "Department of Civil and Environmental Engineering, Duke University", 
        "name": "Laura Torres-Rojas"
      }, 
      {
        "affiliation": "Department of Civil and Environmental Engineering, Princeton University", 
        "name": "Eric F. Wood"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.1016/j.rse.2020.111740", 
        "relation": "isDocumentedBy", 
        "resource_type": "publication-article"
      }, 
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.4441211", 
        "relation": "isVersionOf"
      }
    ]
  }
}
672
1,311
views
downloads
All versions This version
Views 672405
Downloads 1,3111,018
Data volume 32.4 TB32.3 TB
Unique views 535333
Unique downloads 212114

Share

Cite as