Conference paper Open Access
Tombal Thomas; Simonofski Anthony
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Fraud Analytics</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Public Administration</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Data Protection</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Challenges</subfield> </datafield> <controlfield tag="005">20210816134820.0</controlfield> <controlfield tag="001">5205519</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Namur Digital Institute, UNamur</subfield> <subfield code="a">Simonofski Anthony</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">253422</subfield> <subfield code="z">md5:749a12236574500d4157109df729f6a9</subfield> <subfield code="u">https://zenodo.org/record/5205519/files/13_Tombal.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2021-08-16</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="p">user-dfp17</subfield> <subfield code="o">oai:zenodo.org:5205519</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Namur Digital Institute, UNamur</subfield> <subfield code="a">Tombal Thomas</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Artificial Intelligence and Big Data in Fraud Analytics: Identifying the Main Data Protection Challenges for Public Administrations</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-dfp17</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Fraud Analytics refers to the use of Big Data Analytics to detect fraud. Numerous techniques, from data mining to social network analysis, are applied to detect various types of fraud. While Fraud Analytics offers the promise of more efficiency in fighting fraud, it also raises data protection challenges for public administrations. Indeed, whether they use traditional or advanced techniques, administrations consistently use more and more data to deliver public services. In this regard, they often need to process citizen&rsquo;s personal data. Therefore, administrations have to consider data protection legal requirements. While these legal requirements are well documented, the concrete way in which they have been integrated by public administrations in their Fraud Analytics process remains unexplored. Accordingly, we examine two case studies within the Belgian Federal administration (the detection of tax frauds and of social security infringements), in order to shed light on the main data protection challenges faced by public administrations in this regard.</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.5205518</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.5205519</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">conferencepaper</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 127 | 127 |
Downloads | 34 | 34 |
Data volume | 8.6 MB | 8.6 MB |
Unique views | 110 | 110 |
Unique downloads | 32 | 32 |