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Abstracit—Different research communities have devel-
oped various approaches to assess the credibility of
predictive models. Each approach usually works well for
a specific type of model, and under some epistemic con-
ditions that are normally satisfied within that specific re-
search domain. Some regulatory agencies recently started
to consider evidences of safety and efficacy on new medi-
cal products obtained using computer modelling and sim-
ulation (which is referred to as In Silico Trials); this has
raised the attention in the computational medicine re-
search community on the regulatory science aspects of this
emerging discipline. But this poses a foundational problem:
in the domain of biomedical research the use of computer
modelling is relatively recent, without a widely accepted
epistemic framing for model credibility. Also, because of
the inherent complexity of living organisms, biomedical
modellers tend to use a variety of modelling methods,
sometimes mixing them in the solution of a single problem.
In such context merely adopting credibility approaches de-
veloped within other research communities might not be
appropriate. In this paper we propose a theoretical framing
for assessing the credibility of a predictive models for In
Silico Trials, which accounts for the epistemic specificity
of this research field and is general enough to be used for
different type of models.
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|. INTRODUCTION

EFORE a new medical product can be sold in a country,
B evidence must be provided to the regulatory agency of
that country supporting the claim that such new product, if
used as expected and under properly controlled conditions, is
safe (when it does not worsen the health of the recipient) and
effective (when the product does improve the recipient’s health).
Historically, evidence of safety and efficacy is provided through
controlled experiments. Those experiments involving human
volunteers are referred to as clinical trials; by contrast those
with no humans involved are called pre-clinical trials. Some
pre-clinical trials involve animals, whereas others are based
on cell or tissue cultures, tissues and organs from cadavers, or
machineries (bench tests) designed to reproduce the conditions
under which the medical product is expected to operate; these
are referred to as is in vitro tests. So, until recently safety and
efficacy were estimated only with controlled experiments in
vitro, in vivo in animals, or in vivo in humans. As described
in detail in [1], [2], both the USA and European Regulatory
Agencies have recently opened in principle to the possibility
that some of these regulatory evidences are provided using
computer modelling and simulation, what is normally referred
to as “in silico trials”. While for in vitro and in vivo methods
there is an extensive knowledge and a well-established praxis
on how to qualify them (i.e., how to assess their credibility
[3] as predictors of the safety and or the efficacy of a new
medical product), it is still debated how to assess the credibility
of in silico methods in a qualification process [4]-[10]. In most
cases, methods to assess credibility are merely copied from
other research domains, and even applied from time to time
to different types of models from those originally developed
for. While the first technical standards specifically targeting
biomedical applications are appearing [11], there is a clear need
for a general theoretical framing on the problem, that can support
these efforts.
The aim of this position paper is to propose such theoretical
framing for the problem of assessing the credibility of a pre-
dictive models for In Silico Trials (ISTs), accounting for the
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epistemic specificity of this research field and is general enough
to be used for different types of models.

[I. CURRENT PRACTICES FOR CREDIBILITY ASSESSMENT
A. A Taxonomy of Predictive Models

As a first step it is useful to categorise the various models
used in biomedicine. For the purpose of this position paper, we
will categorise them as a function of their knowledge content.
In general, a predictive model can be developed by analysing
how the quantities to be predicted vary as a function of a
set of inputs over a large set of experimental observations
(data-driven of phenomenological models), or by leveraging
some pre-existing knowledge about the physics, chemistry,
physiology and biology of the phenomenon being modelled
(mechanistic models). While purely phenomenological models
exist, no model is purely mechanistic. Also, there are some
modelling approaches that combine mechanistic knowledge and
phenomenological evidence (sometime referred to as grey-box
models). So, there is a continuum from phenomenological to
mechanistic modelling, which is well represented by the degree
of mechanistic knowledge used in building each model.

A second important taxonomy is whether the phenomenon
is modelled as a continuous or as a series of discrete events.
We are not referring here to the need to discretise space and
time for obtaining a numerical approximation, but to mod-
els that are built assuming the phenomenon being modelled
can be described by a finite set of discrete states, whereas
a continuous model describes all quantities as continuous in
space-time.

B. Model Verification & Validation

Before we go any further, it is important to stress the difference
between verification and validation, as the two terms are often
confused, even if are they are tailored to different questions.

Simply speaking, verification tries to answer to the question
“are we building the system right?”, while validation refers to
the question “Are we building the right system?”. The ASME
V&V 40 defines verification as “the process of determining
that a computational model accurately represents the underlying
mathematical model and its solution from the perspective of the
intended uses of modeling and simulation”. In other words, we
need to test that all the implemented code and the solver approx-
imations of the computational model lead to numerical results
that are “sufficiently near” (i.e., taking into account numerical
approximations and discretization errors) to the exact analytical
solutions of the mathematical formulation of the model at hand.

The goal of Validation is instead to assess how well the
computational model represents the reality it is supposed to
represent. That is, with validation we check that the model well
reproduces the biological, physical, mechanical features of the
real phenomenon. To this end, results coming from simulations
are compared against results and measurements coming from
in vivo/in vitro benchmark experiments, usually executed under
controlled conditions.
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C. VV&UQ of Engineering Models

In engineering sciences, there are well established practices
for assessing model credibility for different industrial sectors,
such as aviation, civil, nuclear, etc. These are usually referred
to as Verification, Validation, and Uncertainty Quantification
(VV&UQ, or sometimes referred to more simply as V&V). A
fundamental element in model credibility is what we will call
here Applicability, which is how far from the conditions under
which the model has been validated, the predictions remain
credible. In the following we provide a brief description; more
details can be found in [12], [13].

Any predictive model can be formalised as:

O=f(),

where O is an estimate of O, the quantity we want to predict; f()
represents the predictive model; and [ the set of input values (or
parameters) of the model. In general, / and O are scalar, vector,
or tensor quantities.

1) Context of Use: The first step in the credibility assessment
for a model is the definition of the Context of Use (CoU). This
is a detailed explanation of how we plan to use the model in
the regulatory process. In particular, we need to define precisely
which decisions we would want to make using the model, how
the predicted quantity O informs such decisions, what is the
structure of f{), which inputs I it requires and how they are
determined, what is the uncertainty o (I) affecting such inputs,
and what is the range of values that I can possibly assume when
the model is used in that CoU.

2) Verification: The second step is verification, which is
usually split into code verification and model verification.
Code verification is essentially a quality assurance practice for
the software we use to solve the model, and a stability check
for the numerical algorithms it implements. Software quality
assurance is done with methods typical of software engineer-
ing, such as regression tests, or unit tests. Numerical solvers
implementations are tested to check their stability, their rates of
convergence, their computational efficiency, etc. Commercial
codes tend to have their own extensive code verification.

Model verification, also called calculation verification or so-
lution verification, mainly aims at evaluating the approxima-
tion errors, i.e., the quantification of the error caused by the
approximated solution of the mathematical model, v¢(7y. Once
the code verification is completed, one can assume that any ap-
proximation error is only due to the numerical solution, and not
to any coding errors. Methods for the verification of the model
depend on the model’s structure, and the choice of numerical
methods used to solve it. For example, for continuum models
these may include simple time-step or grid convergence analysis
(e.g., mesh convergence analysis for finite element models).

Normally, for mechanistic approaches, if a particular set of
inputs, I, exists which simplifies f{) to the point where an
analytical solution is possible, this particular solution f{Ix) is
called a benchmark problem, and vy (1) can be easily quantified
against it. When it is difficult or impossible to formulate a
benchmark problem, alternative methods are available such as
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the method of the exact solution and method of the manufactured
solutions [14].

Another important element in the model verification process
is the parameter exploration. The model is executed multiple
times, each run with a different set of inputs, in order to sample
the input space for the range of admissible values, consistent
with the problem being modelled. The goals are to: (i) ensure
that the model runs correctly for all admissible inputs, and (i7)
that the output vary smoothly with the input. If any of these
conditions are not met, it may indicate a problem with the model,
for example numerical instabilities.

It should be stressed, that the separation between code verifi-
cation and model verification can be sometimes a bit artificial.
For example, advanced modelling software platforms such as
ANSYS [15] provide the modellers with a full-blown program-
ming language to describe the model. However, in complex
cases, such languages can be used to describe specific algo-
rithmic behaviours. In such case, the code verification ANSYS
provide would not be sufficient, because the additional code
written by the user would need itself a code verification.

For completeness, some technical standards, such as V&V 40
[11], consider also as part of the verification, the evaluation of
the use error, which is due to human errors of the practitioner
(for example transcription errors).

3) Validation: Once the verification is complete, a validation
study must be conducted. If it is possible to carry out an ex-
periment so well controlled that the measured uncertainty of
the outcome variable, o(O), is negligible, then the prediction
error (|O — O|) can be entirely be ascribed to the model. When
this condition is not met, the definition of predictive accuracy
becomes more complex, and should be framed within the context
of uncertainty quantification and sensitivity analysis.

4) Uncertainty Quantification & Sensitivity Analysis: Uncer-
tainty quantification (UQ) & Sensitivity Analysis (SA) are es-
sential parts of the validation process. Uncertainty quantification
refers to the estimation on how the stochastic error that affects
the input propagates through the model into the output:

o (0) =)

where o () represents the variability of a quantity over repeated
measurements/predictions. Sensitivity analysis is a post-hoc
analysis done on the results of the uncertainty quantification, to
evaluate which elements of the input set, /, are the main drivers
of output variability. For a systematic review of the methods
used in general engineering, see [16].

5) Applicability: The term “Applicability” refers to whether
the validation evidences provided are relevant within the CoU
of the model. For example, if a metal structure may be occa-
sionally subjected to loads large enough to induce plasticity in
the metal, a validation conducted only with low loads where
the metal behaves in purely elastic fashion would not provide
enough evidence that the model is credible when higher loads
are involved, and plasticity may occur. For phenomenological
models, such as machine learning, applicability is framed in
term of the generalisation error [17]. For mechanistic models it

is related to the concept of “limit of Validity” of the theory used
to develop the model [18].

6) Technical Standards: Probably the most important effort
in this field is the one of the American Society of Mechanical
Engineering (ASME) standardisation committee “V&V: veri-
fication and validation in computational modeling and simula-
tion” [19]. It is articulated in a number of sub-committees, each
focusing on a specific industrial sector; the one of interest here
is the “V&V 40 Verification and Validation in Computational
Modeling of Medical Devices” [11].

[ll. THE THEORETICAL FRAMING OF
CREDIBILITY ASSESSMENT

A. From Practice to Theory

In the following section, we propose a formal framing for car-
rying out credibility analyses for in silico models in biomedical
sciences and highlight the assumptions on which such practices
are built upon. Thus, providing a theoretical framework which
can be used to evaluate if and when such practices are valid.

Assume we can measure O;, the quantity we want to predict,
under certain conditions, ¢ = 1, ..., n. The predictive error of
model f(), Ay, can be quantified as the root mean square
difference between the model prediction and the experimental
measurement,

, 1 €S,

with & the set of all admissible inputs defined by all possible
conditions that may occur in reality for the phenomenon being
modelled.

Because these experiments are usually complex, expensive,
and time-consuming, it is almost always true that the number n
of conditions we can test represents only a small sample of .
Thus, simply reporting the value of Ay for a small number, #,
of experiments is not enough to establish the model credibility.
We need also to make some assumptions on the distribution and
smoothness of A;(I) over the entire domain . But to do this,
we need to separate the various sources of error. The predictive
error can be decomposed as:

O—O:Oém:a]—FEf—FVf’],

where «,, is the overall predictive error, which can be de-
composed into an aleatory error, oy, arising from the intrin-
sic randomness or variability of the data used to inform the
model, and an epistemic error, £, that influences both the
prior knowledge and the phenomenological derivation. Last,
when f() is too complex to be solved analytically, the model
prediction is affected also by a numerical approximation error,
vy, 1, which depends on the structure of the model as instantiated
for the inputs f(I). In general, we can only quantify «,,, through
controlled experiments; to separate the three components of this
error, we need to make some assumptions, which when valid
enable the VV&UQ process.
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The first assumption is that oy has mean nought. If this is
true, then we can write:

ave (‘O — OD Reptuvrg.

The second assumption is that the numerical approximation
error is negligible, compared to the epistemic error (vy; =
o(ey)). If this is true, then:

ave (’O — O‘) Rey.

The third and last assumption is that all the uncertainty af-
fecting o, is due to the aleatoric component of the prediction
error. If this is true, then:

o((0-0]) =

where o is the variability of the prediction error. Only if these
assumptions are justified, we can evaluate the credibility of a
predictive model through the standard VV&UQ process:

— First, we need to define the CoU of the predictive model,
and the maximum acceptable predictive error.

— Then we need to check that the inputs we provide to our
predictive models are accurately measured, in the sense
that the measurements we use to quantify them are affected
by small systematic errors, if any; this would confirm the
first assumption.

— Obtain some values for the output O, under conditions
for which the epistemic error is known to be nought. The
predictive error for such conditions provides an estimate of
the numerical approximation error; if this is much smaller
than the maximum acceptable predictive error, it would
confirm the second assumption.

— With the first two assumptions checked, we can run mul-
tiple validation experiments and obtain an estimate of the
epistemic error. By looking at how the epistemic error
varies for different values of the inputs, we can also inform
the applicability of the model, for example defining the
limits of validity of the model in terms of input values.

— Last, we need to confirm the third assumption, that all un-
certainty comes from the aleatoric component. This is not
easy, and it requires some reflections on the internal struc-
ture of the model. If the third assumption is confirmed, then
we can run an uncertainty quantification study, observing
how the variability of the inputs propagates into the model
predictions.

A final consideration on the concept of Applicability is
needed. The goal is to estimate the predictive error of the model
as a function of the input, over the admissible range in the input
space, defined by the CoU. Models are usually validated over
a limited set of possible input values, which might provide a
sparse sampling of such error function. To deem such sparse
sampling sufficient for establishing the credibility of the model,
we make two additional assumptions.

The first assumption regards the dependence of the model
prediction error on the input; the variation of the prediction error
should be smooth, i.e., for similar input values the model should
produce similar prediction errors, and the difference in the error
should be negligible compared to the prediction error of the
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model for any input; formally, if I; ~ I5 in some sense, then:
ap (1) — an (I2) o< o[ans (1;)]

The second assumption is that the credibility of the model is
a decreasing function of the distance between the input values
for which the validation was conducted, and the input values for
which the model is being used in that specific CoU. As we will
discuss in the following section, these assumptions are related
to the type of model being used.

IV. CREDIBILITY ASSESSMENT OF BIOMEDICAL MODELS
A. Why Biomedical Models Are Different

The process to assess the credibility of a predictive model
described in the previous sections was developed for general
engineering applications, where there is usually fairly robust
mechanistic knowledge of the process being modelled; thus,
most of these models are physics-based, with a major mecha-
nistic component that describes continuum field problems using
systems of ordinary differential equations (ODEs) or partial
differential equations (PDEs), solved with well-established nu-
merical methods.

The situation in biomedicine is rather different. For many bio-
logical processes the mechanistic knowledge available is partial
or totally absent. In many cases the observations used to develop
this mechanistic knowledge are affected by considerable errors,
and sometimes these are not even quantitative. The complexity
of most biological processes is hardly reducible; for example in
most cases the assumption of scale separation involves consid-
erable errors [20]. This has forced the researchers in this field
to use a wide range of modelling methods, including continuum
field models, agent-based models, machine learning models, and
even combinations of these, like orchestrated multiscale models.

The standard VV&UQ described before is usually valid for
continuum field models, lumped-parameter and compartment
models, diffusion-reaction models, etc. But for a few types of
models used in biomedicine further discussion is needed.

B. Phenomenological Models

The distinction between statistical and machine learning mod-
els is debatable [21], so here we prefer to generically refer
to phenomenological models. Is VV&UQ useful to establish
the credibility of phenomenological models? Code verification
applies to any software artefact, and this includes also phe-
nomenological models. Strictly speaking the concept of model
verification does not apply, since there is not mathematical
model to solve numerically; some authors use the term model
verification to mean validation (e.g., [22]).

Also, the concept of validation is quite different: to develop
a phenomenological model we need a number of inputs sets
for which the true (i.e., experimentally observed) output set
is known, which is another definition of validation set. The
difference between the predictions of the final model and the true
values of the training set is called fraining error. Unfortunately,
because the model is developed by induction, the training error
is in no way predictive of the so-called test error, which is the
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error the machine learning model will show when tested against
a new validation set. In a sense, the evaluation of the test error
is the closest thing to validation for machine learning models.

But the biggest issue with machine learning models is
Applicability. First, phenomenological models are highly
environment-specific, and any changes of the original field envi-
ronment may result in a significant different outcome. Thus, they
can show a considerable degree of stiffness in the prediction er-
ror, when not optimally trained against adversarial perturbations
[23]. This means that in some cases the predictive errors may
not have the smoothness the concept of applicability requires.
But there are deeper issues. Mechanistic models are usually built
under some hypotheses (idealisations) which are acceptable only
within a range of input conditions, called limit of validity of the
theory. For these models we can expect the predictive error to
be fairly constant (and small) while the inputs are within the
limits of validity, and then start to increase the further we go in
the inputs space beyond these limits. None of these assumptions
can be made for a phenomenological model. Even if we found
small prediction errors for all inputs of both the training and
test set, in principle nothing will guarantee that for an input not
included in these two sets the prediction error is much larger.

One specific issue is called Concept Drift [24]. This indicates
that the statistical properties of the output, which the model
is trying to predict, change over time in unforeseen ways. Of
course, in principle the risk of Concept Drift also affects mecha-
nistic models; if the model has been designed and validated over
a normal population, and then a characteristic of the population
changes, e.g., obesity becomes increasingly common, one might
observe a progressive loss of predictive accuracy in all types of
models. But in a mechanistic model the inputs are carefully
selected to include all factors that might significantly affect
the output, so in this case a good model would include body
weight among the input variables. In machine learning the input
set is selected from the available information to maximise the
predictive accuracy on the training set, the risk of not including
body weight in the training set if not all patients have normal
weight, can be much higher.

Recently, the FDA published a report entitled “Proposed
Regulatory Framework for Modifications to Artificial Intelli-
gence/Machine Learning (AI/ML)-Based Software as a Medical
Device (SaMD) - Discussion Paper and Request for Feedback”
[25]. Even if the target is different (SaMD are software artefacts
directly involved in the care process of individual patients), some
conclusions are relevant here. In short, FDA advocates for these
products the use of total product lifecycle (TPLC) regulatory
approach. At risk of oversimplifying, this means that a phe-
nomenological model is never truly validated, and its predictive
accuracy should periodically re-tested. In the best-case scenario,
every time the model is used to make a prediction, we should later
on collect the true value for that case and recalculate the average
predictive accuracy; if this degrades below an acceptability
threshold the use of the model should be suspended.

C. Agent-Based Models

Agent-Based Models (ABM), are mechanistic models, where
at least some of the inputs are discrete. Most ABM represent

agents as finite-state machines, capable of assuming a limited
number of discrete states, moving and interacting in a space-time
continuum over which a number of fields are also computed.

In some implementations, only the state transitions are han-
dled as discrete rule-based events, whereas the motion of the
agents, and changes in the continuum fields, are expressed by
coupled continuum models formulated as systems of ordinary or
partial differential equations [26]. In some others, space, time,
and field quantities are discretised, so that the entire system can
be modelled with discrete-rule based events [27]. But this is a
choice made for modelling convenience, as only state variables,
and the birth-death of the autonomous agents are epistemically
discrete; all the other variables remain conceptually continuous.

Generally speaking, the VV&UQ approach is appropriate to
establish the credibility of an ABM. The epistemically contin-
uous parts of the model require extensive model verification,
whereas the inherently discrete ones require only code veri-
fication, as they involve only algebraic calculations; however,
because of the possibility of local instabilities, a parameter
exploration is recommended. Validation and uncertainty quan-
tifications can be performed normally. Applicability requires in-
stead some additional cautions. The discrete nature of the ABMs
does not ensure the smoothness of the predictive error over
the input space, although parameter exploration can reassure
of the smoothness of the predictions over the inputs space. The
state-transition rules are often based on theories informed by
biological observations, which have in some cases faced only
limited falsification attempts, and in general are incomplete
descriptions of the causal relationships. For all these reasons
ABMs predictions made far from the validation sets in the input
space should be used with limited confidence.

D. Multiscale and Multi-Physics Models

Because the assumption of scale separation usually involves
significant errors for living organisms, it is becoming quite
popular for biomedical problems to use multiscale models. Also,
sometimes it is convenient to break down the problem into
multiple models, each capturing an aspect of the phenomenon
being modelled (sometime these are referred to as Multiphysics
models). In both cases, we are not dealing with a single model,
but with an orchestration of multiple component models. In the
case of multiscale model these component models are coupled
over space-time through homogenisation / particularisation op-
erators that transform quantities across space-time scales. In
the case of Multiphysics models there is also sometime the
need to interpose in the orchestration between two models a
transformation model that remaps certain properties across the
specific physics theories.

As discussed in [18], model orchestrations pose peculiar
problems when used to falsify theories. The same reasons make
it very difficult to discuss if the traditional VV&UQ approach
to model credibility is appropriate for this class of models.
An in-depth discussion is beyond the scope of this position
paper: interested readers can explore the variety of approaches
reported in the literature [28]-[34]. But the general philosophy
that is emerging is that the credibility of multiscale models
should be assessed first by carrying out an individual VV&UQ
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for each single-scale component model, and another for their
multiscale orchestration, with validation experiments relevant
to the CoU. In certain complex models, homogenisation and
particularisation functions are models themselves, and thus they
also should have individual VV&UQ assessments.

Also, uncertainty quantification is challenging with models’
orchestrations: due to be combinatory nature of the problem
brute force approaches such as Monte Carlo method is most
of time prohibitive. In these cases special approaches are re-
quired such as Bayesian multi-fidelity schemes [35], or Gaussian
processes [36].

E. Applicability for Non-Mechanistic Models

In the most general case, the model f() is built composing
phenomenological and mechanistic knowledge. Mechanistic
knowledge derives from scientific theories that have so far
resisted falsification attempts so extensively that the scientific
community accept them as operationally true; these are some-
times referred to as first principles. A good example of such
theory is Newton’s second law of dynamics. Phenomenological
models are entirely and exclusively based on observational data;
these can range from simple statistical regressions, to sophis-
ticated machine learning models. The model f() can then be
written as:

f )= fp), v, J)).

Where p(I) is the mechanistic part of the model, (I, J)is
the phenomenological model and J is a set of observed data
(sometimes referred to as training set). The error of the model
can then be written as:

e (f)=elen) ey (1, J)).

The question of applicability is related to the shape of e(f (I)):
if the error is nearly constant over a wide range of /, we can
predict far from the input values used in validation with small
risk; if the error varies considerably over I, then extrapolation
is risky. In most cases, there is a reliable understanding of
how the observational error (1) (i.e., instrumentation accuracy)
varies across the range of observed values. Since the structure
of mechanistic models is explicit (white box models), it is in
general possible to estimate the shape of its error from that of the
inputs: €,,(I) ~ pu(e(I)). It is instead very difficult to estimate
the shape of the error affecting the phenomenological part of the
model, £, (1, J), due to its dependence on both the inputs and
the training set, and the uncertainty on the structure of ¢ (I, J)
(black box model).

This has an important practical implication: for predomi-
nantly mechanistic models error propagation studies make it
possible to estimate the shape of the prediction error over the
input space, and guide on deciding how far from the vali-
dation region the model can still accurately predict; for phe-
nomenological models this is not possible, and thus model
applicability should be limited to the range of validated
input values.
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V. PossIBLE CONTEXT OF USE FOR IN SiLICO TRIALS

The credibility of a predictive model can be evaluated
with respect to CoU aimed at reducing, refining, or replac-
ing an experimental study conducted in vitro, or in vivo ei-
ther on animals or humans (clinical trial). While each of
these scenarios is potentially relevant for different reasons,
we will focus here on the use of predictive models to reduce
the number of patients involved in and/or the duration of a
clinical trial.

A. The Standard Clinical Trial

The effect of an intervention i is tested clinically by forming a
cohort, A,,, of n physical patients (each represented by a patient
J descriptor set I;), who are selected to be representative of the
target patient population by a set of inclusion and exclusion
criteria. Each patient in the cohort is then randomly allocated to
an intervention i, and the effect measured through the endpoint,
e. Anintervention is considered effective if the desired effecton e
is observed. For example, in the case of a treatment/no treatment
design, the average value of e in the treated subset of the cohort
is significantly better. Such conclusion is considered credible
only if the statistical test used in the evaluation of the difference
in endpoints has large power, i.e., if the statistical power €(-)
is large enough (e.g., >80%). As (2 typically increases with n,
larger cohorts can provide stronger statistical evidence.

B. In Silico-Augmented Clinical Trial

Assume f(I;,p,t) is a mathematical model that can predict
changes in the endpoint e for each patient, p, and for either the
naive (i.e., no treatment, t = 0), or the intervention (¢ = 1). The
clinical accuracy of such model for patient / can be expressed
as:

e(l) =le—él=le— [ I,

Where ¢ is the prediction of the endpoint e. Now, the fun-
damental idea behind in silico-augmented clinical trials is as
follows:

Proposition 1 (in silico-augmented clinical trials): If each
patient in a cohort is represented by I;, the effect of the inter-
vention is represented by e, and there is a mathematical model
f(I;,1) that can predict e with sufficient accuracy € given [ and
the treatment i, we can then generate virfual patients by simply
creating new [ J’ sets that are possible in the target population,
and use the model f() to do an in silico clinical trial on these
virtual patients, in order to predict their values of e.

The cohort Z,,, of m virtual patients could be used to sup-
plement cohort A,, in order to decrease its size for the same
statistical power.

The key issue is whether the test of a relevant statistical hy-
pothesis on the effect of i, using the virtual cohort, H (0 i, Z,,),
where O parameterises the distribution of endopoints e, can be
considered a reliable replacement of H(O;1i, A,,).

To answer affirmatively to this question, we should to
demonstrate:
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1) VI; € E,,, 30 <n < oo, such that I; € A,; ie., that
every virtual patient represented by the descriptor set [ is
a plausible virtual patient, in that we would observe that
descriptor set in physical patient, if the physical cohort
was sufficiently large.

2) the clinical accuracy of the predictor f() estimated on
the cohort A,, is representative of the accuracy of the
predictor on any other (larger) cohort, and such accuracy
is clinically meaningful, i.e.,VJ, e(I;) < €.

3) Last, that VO<pg<1, Im(B),n(B) < oo,
such  that Q(H(©;i,5;)) > BV >m(B), and
Q(H(O;1,Ar)) > Yk >n(B); ie., for sufficiently
large virtual and physical cohorts, the conclusions of
the effect of the intervention assessed from virtual and
physical cohorts are identical.

Furthermore, while it is not strictly necessary, in some cases:

4) We may also need to prove that for some relevant measure
of discrepancy, dg, there are m,n < oo, such that the
distance dg (2., Ay) < 0, for small § > 0; i.e., the sets
of patient descriptors in the virtual and physical cohorts
are sufficiently similar when the cohorts are sufficiently
large.

C. Virtual Patients Plausibility

To demonstrate that =,,, C A,, we need to find other cohorts
where I (or more likely one element of /) have been observed on
a much larger cohort. There are two practical difficulties.

In many cases large enough cohorts are available only for
healthy subjects; in that case we need to demonstrate that the
range of admissible values observed in the normal population
does not change in the diseased population: for example, we
can take the male-female ratio from general population studies,
because no disease changes the gender.

The second problem is that rarely all elements of / have been
observed in a large cohort, so we are forced to take the admissible
ranges for different elements, from different populations. This
is fine, as far as we can demonstrate that the elements of / are
independent, i.e., the variation of one element does not affect
the variation of the others. Alternatively, we need to estimate
the joint distribution for this set, which might not be easy.

D. Meaningful Clinical Accuracy

Showing e(I) < ¢ is in general not easy. The first problem
is how the clinical accuracy is estimated. In the simplest cases,
both 7 and e are observed at the same time, but in some cases f()
is arisk predictor, in the sense it predicts an endpoint that can be
observed much later using / observed now. A typical example is
the predictor of hip fracture risk, where models predict strength
from CT images and currently available clinical data, and this
strength is used as a predictor of the risk of fracture, which may
occur even five or ten years later. In these cases, three possible
approaches can be used:

a) The gold standard is a prospective evaluation with a
dedicated clinical trial; a cohort of patients is enrolled,
all quantities in the cohort descriptor / measured today
are used to predict who will fracture and who will not

in the next X years; recall all patients after X years and
check who did actually fracture and who did not. This can
be a very expensive trial. If X is long many will be lost
to the follow-up and, if the incidence of fracture is low,
a large number of patients should be enrolled to observe
enough fractures.

b) A second approach uses long-term observational
databases, where both I and e are observed regularly
over X years. Any time after that, one may take the /
observed at the beginning of the study and use them to
predict how many will have endpoint e after X years.
The main limitation is that the data were not collected
specifically to validate a specific model. Thus, most likely
the information available is not exactly what f() needs to
be properly informed, so it is not certain how much of the
observed inaccuracy is due to the model, and how much
of this is due to poor quality of the data.

c¢) If a cohort can be formed with a portion of the patients
having the endpoint over threshold now (i.e., they have a
fracture), and the rest not, and we measure the necessary
I now, we will be able to check how good f() is in
separating the positive and the negative cases; this is
sometimes called stratification accuracy. A good stratifi-
cation accuracy is a necessary but not sufficient condition
for a good predictive accuracy; if a predictor has a poor
stratification accuracy for sure it will also have a poor
clinical accuracy in prospective evaluations; but a good
stratification accuracy does not automatically ensure an
equally good prospective accuracy.

E. Representativeness of the Accuracy: Power
and Applicability

If the physical cohort used to evaluate the clinical accuracy
is large enough, this problem can be formulated as a statisti-
cal power problem. But even when there are enough data to
achieve sufficient statistical power, a more general problem of
applicability remains. In order to be useful, a model should
be able to make predictions for input values that are different
from those used to assess its accuracy; but we do not know
the predictive accuracy of the model for those new inputs.
Considerations on the general regularity of physical quantities,
and about the assumption that model accuracy should degrade
smoothly in the sense that predictions made for similar inputs
should present similar predictive accuracy, allow to assume that
a degree of extrapolation is possible, in the sense that the model
can be considered reliable even when used to predict for inputs
different from those observed in the clinical validation cohort
(Applicability).

F. Similarity Measures in Cohort Expansion

The concept of Applicability does have another important im-
plication for the use of predictive models for cohort expansion.
A possible approach is described in [37], [38]. The idea is:

1) Let L(e € A) be the likelihood of an intervention ¢
given the responses e observed over the physical co-
hort A. Assuming conditional independence, L(e € A)
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H?Zl P(eli;); in other words, the likelihood is propor-
tional to the product of the probability distribution of
effect e, for each intervention level. In the simplest case
of a single intervention level, L(e € A) o« P(etreat) X
P(eno treat)~

2) According to Bayes theorem, the posterior probability
that the intervention ¢ produces the desired effect e is
P (eli) = %, where 7 (%) is the prior probability,
and P(e) is the marginal probability of e. L(i|e) and P(e)
are observed experimentally, and thus their precision is
limited by the numerosity of A. But if we can elicit 7 (4)
from the virtual patient cohort =, whose size m can be
freely increased, we can boost the power of P(e).

3) Inmost cases, the confidence we have on L(i|e) is greater
than that we have on 7(4), which is elicited, but its power
is insufficient because the cohort of physical patients A
is too small. Adding a prior may improve the posterior
precision, but the risk with this approach is that if m >
n, the posterior probability P(e|¢) might be influenced
excessively by the virtual patients. So, we look for the
smallest number of virtual patients sufficient to attain the
desired power.

Regarding the selection of the number of virtual patients,
Haddad ez al. [38] suggest to begin by fixing the maximum
number (strength) of virtual patients, 1,,,x, and adjust the actual
number used, ny = Nyax £, by multiplying it for a discount
factor,

F=(pln.3) =1-ep[-(2)].

which depends on a measure of compatibility of the virtual and
real patients (they call it a Bayesian p-value) and two parameters,
(k, ), controlling the penalisation. These parameters are fixed
on an ad hoc basis.

This so-called p-value is arguably a measure of (stochastic)
dissimilarity (i.e., compares the posterior distributions) between
the parameter of interest, 6, from the trial using a minimally
informative prior on the augmented cohort () and the one
obtained using the virtual cohort only (6y),

p:P[aFSQO}v

estimated using the simulated data.

They argue that as p — 1, the compatibility of the virtual
cohort is greater and thus ng — n.x. This seems to indicate
they regard larger values of # as indicating compatibility with the
real patients. Hence, if the posterior distribution using the real
data and a flat prior has more mass towards smaller values of 6,
compared to the posterior distribution using the virtual cohort,
the method indicates compatibility with the real data and allows
for a larger contribution from the simulated patients.

VI. CONCLUSION

The aim of this position paper is to propose a theoretical
framing for assessing the credibility of a predictive models
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for In Silico Trials, which accounts for the epistemic speci-
ficity of this research field and is general enough to be used
for different types of models. We also proposed mathematical
formalisms for one particular application of in silico methods,
where validated predictive models are used to augment clinical
trials on physical cohorts by simulating the clinical trial of a new
intervention on virtual cohorts. A recap is proposed in Table I.
The potential scope for in silico methods is of course much
broader: in principle in silico methods can be used also for re-
ducing, refining, or replacing experimentations done in vitro, or
in vivo.

The approach that most practitioners have adopted so far is
conservative and aims to frame in silico methods within the
current structure and logic of testing new medical interventions.
In most cases we seek to demonstrate equivalence with the
experimental method we aim to replace, but the general logic
behind remains the same. The development of in silico methods
has much deeper implications.

Since 1025 (when Ibn Sina completed the Canon of
Medicine), the whole basis of the performance assessment of
medical interventions has been that the mechanisms that regulate
the disease and the effect of an intervention on it are too complex
to be explored mechanistically and can be investigated only
through observation. The intervention is trailed on a number of
closely monitored patients, and if we do not observe any severe
adverse effect, and the intervention shows to be effective in these
patients, we authorise the use of such intervention on everyone.

In other industrial sectors safety is largely ensured through
modelling and simulation. It is inconceivable that a new large
passenger airplane is produced in a few copies, which are run on
test routes with real passengers, while we monitor if anything
goes wrong; no passenger can board a new airplane design before
its safety has been thoroughly tested through a combination in
vitro and in silico methods.

This is because for every known failure mode for an
airplane a predictive model can be developed. As in silico
methods develop and mature, both in breath of scope and cred-
ibility, there will be a growing opportunity for replacement,
maybe computer simulations replacing physical experiments
entirely. Probably the low-hanging fruits here are those situ-
ations where the animal model, or the standard clinical trial
are already known to be poor predictors of the real-world
safeness and/or effectiveness. As this revolution occurs, it will
become vital to have a rigorous theoretical framing for the
processes used to assess the credibility of in silico methods.
We hope this paper can provide a first contribution in this
direction.
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TABLE |
SUMMARY OF THE COMPONENTS OF CREDIBILITY IN AN IN SiLICO CLINICAL TRIAL

In Silico Augmented Clinical trials: credibility

Goal: Create a cohort =, of m virtual patients to supplement the cohort 4,, of n real patients in order to decrease its size for the
same statistical power

Requirement Mathematical Formulation Proposed methodologies to assess requirement
1) Assess the credibility of VI € £,,30 <n < o0:[; € Ay; | Find other cohorts where / (or more likely one element of /) have
virtual patients been observed on a much larger cohort.
Weaknesses:

1) large enough cohorts are available only for healthy
subjects; demonstrate that the range of admissible values
of the normal population does not change in the diseased
population

2) Rarely all elements of | are observed in a large cohort; take
the admissible ranges for different elements from
different populations, if the elements of | are independent.
Alternatively, try to estimate the joint distribution for the

set.

2)Assess that the clinical v/, e(l;) <e. Possible approaches:

accuracy is meaningful 1) Use prospective evaluation with a dedicated clinical trial;
Weakness: Evaluation can be done only at the end of the
trial.

2) Use of long-term observational databases. Weakness:
Uncertainty about observed inaccuracy (i.e., is due to the
model or to inadequacy of data coming from other
experiments?).

3) Use stratification accuracy. Weakness: Necessary but not
sufficient condition for a good predictive accuracy.

3)Assess that, for successfully |V 0 < 8 < 1,3m(B),n(B) < :| Formulate the problem as a statistical power problem, when

large cohorts, the 0 (H(@; LE])) > B Vvj>m(p),| thecohortsarelarge enough. Weakness: Not sufficient to make
conclusions of the effect of predictions for input values outside those used to assess
the intervention assessed accuracy; Assumptions about regularity of physical quantities
from virtual and physical and smoothness of model accuracy degradation may allow

and
Q(H(6;i,4y)) > B Yk > n(B);

cohorts are identical application on inputs outside the one used in the clinical
validation cohort to some extent (Applicability).
4) (Optional) Assess that Am,n < oo: dy(E,,A,) <8, | Proceed as for point 3.

sets of patient descriptors in for small § > 0 (for some dp)
the virtual and physical
cohorts are sufficiently
similar when the cohorts are
sufficiently large.

Cohort Expansion
Methodology: Elicit the prior probability (i) that an intervention i produces a desired effect e from the virtual patient cohort =,
whose size m can be freely increased, to boost the power of P(e), marginal probability of e and to better estimate the posterior
probability P(e|i). Weakness: if m >> n, the posterior probability P(e|i) might be influenced excessively by the virtual patients.
In this case it is possible use the approach by Haddad et al. to estimate the size of the virtual cohort.

I; patient j in a given cohort; € accuracy of the mathematical model f (I;, i) in reproducing e

Zn cohort of virtual patients; H(@; i, Em) statistical hypothesis on the effect i, using the virtual

A, cohort of real patients; cohort

e effect of a given intervention (endpoint) H(O; i, A,) statistical hypothesis on the effect i, using the real cohort,

é is the prediction of the endpoint e 6 the set of endpoints of &

i intervention (i.e., drug or medical device) 0 the set of endpoints of e

dy a given measure of discrepancy 0(H(6;1, A,)) conclusions on the effects of a given intervention j over
a given cohort 4,,, given the endpoints &
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