Conference paper Open Access

Anticipatory Admission Control and Resource Allocation for Media Streaming in Mobile Networks

Bui, Nicola; Malanchini, Ilaria; Widmer, Joerg


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Prediction, Resource Allocation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Admission Control</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Mobile Networks</subfield>
  </datafield>
  <controlfield tag="005">20200120173319.0</controlfield>
  <controlfield tag="001">51786</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Bell Labs, Alcatel-Lucent</subfield>
    <subfield code="a">Malanchini, Ilaria</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">IMDEA Networks Institute</subfield>
    <subfield code="a">Widmer, Joerg</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">857764</subfield>
    <subfield code="z">md5:d7a9267246c3a2de912555246577b3d7</subfield>
    <subfield code="u">https://zenodo.org/record/51786/files/Anticipatory_Admission_Control_Resource_Allocation_2015_EN.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2015-11-06</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-h2020_monroe</subfield>
    <subfield code="o">oai:zenodo.org:51786</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">IMDEA Networks Institute, UC3M, Leganes</subfield>
    <subfield code="a">Bui, Nicola</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Anticipatory Admission Control and Resource Allocation for Media Streaming in Mobile Networks</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-h2020_monroe</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://opensource.org/licenses/afl-3.0</subfield>
    <subfield code="a">Academic Free License v3.0</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The exponential growth of media streaming traffic will have a strong impact on the bandwidth consumption of the future wireless infrastructure. One key challenge is to deliverservices taking into account the stringent requirements of mobile video streaming, e.g., the users&amp;rsquo; expected Quality-of-Service. Admission control and resource allocation can strongly benefit from the use of anticipatory information such as the prediction of future user&amp;rsquo;s demand and expected channel gain. In this paper, we use this information to formulate an optimal admission control scheme that maximizes the number of accepted users into the system with the constraint that not only the current but also the expected demand of all users must be satisfied. Together with the optimal set of accepted users, the optimal resource scheduling is derived. In order to have a solution that can be computed in a reasonable time, we propose a low complexity heuristic. Numerical results show the performance of the proposed scheme with respect to the state of the art.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1145/2811587.2811604</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
122
112
views
downloads
Views 122
Downloads 112
Data volume 96.1 MB
Unique views 121
Unique downloads 111

Share

Cite as