Conference paper Open Access

Behind the NAT – A Measurement Based Evaluation of Cellular Service Quality

Kaup, Fabian; Michelinakis, Foivos; Bui, Nicola; Widmer, Joerg; Wac, Katarzyna; Hausheer, David


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20200120173747.0</controlfield>
  <controlfield tag="001">51782</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">MDEA Networks Institute, Universidad Carlos III de Madrid</subfield>
    <subfield code="a">Michelinakis, Foivos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">MDEA Networks Institute, Universidad Carlos III de Madrid</subfield>
    <subfield code="a">Bui, Nicola</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">MDEA Networks Institute</subfield>
    <subfield code="a">Widmer, Joerg</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Universite de Geneve,  University of Copenhagen</subfield>
    <subfield code="a">Wac, Katarzyna</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Peer-to-Peer Systems Engineering Lab, Technische Universit ̈at Darmstadt</subfield>
    <subfield code="a">Hausheer, David</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">312917</subfield>
    <subfield code="z">md5:900aa7f9af34ed9abc6b0dec9271076e</subfield>
    <subfield code="u">https://zenodo.org/record/51782/files/Behind_the_NAT_2015_EN.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2015-11-13</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-h2020_monroe</subfield>
    <subfield code="o">oai:zenodo.org:51782</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Peer-to-Peer Systems Engineering Lab, Technische Universit ̈at Darmstadt</subfield>
    <subfield code="a">Kaup, Fabian</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Behind the NAT – A Measurement Based Evaluation of Cellular Service Quality</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-h2020_monroe</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://opensource.org/licenses/afl-3.0</subfield>
    <subfield code="a">Academic Free License v3.0</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Abstract&amp;mdash;Mobile applications such as VoIP, (live) gaming, or video streaming have diverse QoS requirements ranging from low delay to high throughput. The optimization of the network quality experienced by end-users requires detailed knowledge of the expected network performance. Also, the achieved service quality is affected by a number of factors, including network operator and available technologies. However, most studies focusing on measuring the cellular network do not consider the performance implications of network configuration and management. To this end, this paper reports about an extensive data set of cellular network measurements, focused on analyzing root causes of mobile network performance variability. Measurements conducted over four weeks in a 4G cellular network in Germany show that management and configuration decisions have a substantial impact on the performance. Specifically, it is observed that the association of mobile devices to a Point of Presence (PoP) within the operator&amp;rsquo;s network can influence the end-to-end RTT by a large extent. Given the collected data a model predicting the PoP assignment and its resulting RTT leveraging Markov Chain and machine learning approaches is developed. RTT increases of 58% to 73% compared to the optimum performance are observed in more than 57% of the measurements.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.51782</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
117
28
views
downloads
All versions This version
Views 117117
Downloads 2828
Data volume 8.8 MB8.8 MB
Unique views 112112
Unique downloads 2727

Share

Cite as