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Abstract

Let’s define S (x) = ϑ(x) − x, where ϑ(x) is the Chebyshev function. We prove that the Riemann
Hypothesis is false when

∫ ∞
x

S (y)×(1+log y)
y2×log2 y

dy ≥ S (x)2

x2×log x is satisfied for some number x ≥ 121.
In addition, we demonstrate that the previous inequality is satisfied when S (x) ≥ 0 for some
number x ≥ 121. It is known that S (x) changes sign infinitely often. In this way, we show that
the Riemann Hypothesis is indeed false.
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1. Introduction

In mathematics, the Riemann Hypothesis is a conjecture that the Riemann zeta function has
its zeros only at the negative even integers and complex numbers with real part 1

2 [1]. Let Nn =

2 × 3 × 5 × 7 × 11 × · · · × pn denotes a primorial number of order n such that pn is the nth prime
number. Say Nicolas(pn) holds provided∏

q|Nn

q
q − 1

> eγ × log log Nn.

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant, log is the natural logarithm, and
q | Nn means the prime number q divides to Nn. The importance of this property is:

Theorem 1.1. [2], [3]. Nicolas(pn) holds for all prime numbers pn > 2 if and only if the
Riemann Hypothesis is true.

In mathematics, the Chebyshev function ϑ(x) is given by

ϑ(x) =
∑
p≤x

log p

where p ≤ x means all the prime numbers p that are less than or equal to x. We know this:

Theorem 1.2. [4].

lim
x→∞

ϑ(x)
x

= 1.
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Theorem 1.3. [5]. For x > 1:

ϑ(x) < (1 +
1

2 × log x
) × x.

Let’s define S (x) = ϑ(x) − x. It is a known result that:

Theorem 1.4. [6]. S (x) changes sign infinitely often.

We also know that

Theorem 1.5. [3]. For x ≥ 121:

log logϑ(x) ≥ log log x +
S (x)

x × log x
−

S (x)2

x2 × log x

Let’s define H = γ − B such that B ≈ 0.2614972128 is the Meissel-Mertens constant [7]. We
know from the constant H, the following formula:

Theorem 1.6. [8]. ∑
q

(
log(

q
q − 1

) −
1
q

)
= γ − B = H.

For x ≥ 2, the function u(x) is defined as follows

u(x) =
∑
q>x

(
log(

q
q − 1

) −
1
q

)
.

Nicolas showed that

Theorem 1.7. [3]. For x ≥ 2:

0 < u(x) ≤
1

2 × (x − 1)
.

Let’s define:

δ(x) =

∑
q≤x

1
q
− log log x − B

 .
Robin theorem states the following result:

Theorem 1.8. [9]. δ(x) changes sign infinitely often.

In addition, the Mertens second theorem states that:

Theorem 1.9. [7].
lim
x→∞

δ(x) = 0.

Besides, Rosser and Schoenfeld derived a remarkable identity:

Theorem 1.10. [5].∑
q≤x

1
q

= log log x + B +
S (x)

x × log x
−

∫ ∞

x

S (y) × (1 + log y)
y2 × log2 y

dy.
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We define another function:

$(x) =

∑
q≤x

1
q
− log logϑ(x) − B

 .
Putting all together yields the proof that the inequality $(x) > u(x) is satisfied for a number
x ≥ 3 if and only if Nicolas(p) holds, where p is the greatest prime number such that p ≤ x.
In this way, we introduce another criterion for the Riemann Hypothesis based on the Nicolas
criterion and deduce some of its consequences. One of these consequences is that the Riemann
Hypothesis is indeed false.

2. Results

Theorem 2.1. The inequality$(x) > u(x) is satisfied for a number x ≥ 3 if and only if Nicolas(p)
holds, where p is the greatest prime number such that p ≤ x.

Proof. We start from the inequality:
$(x) > u(x)

which is equivalent to ∑
q≤x

1
q
− log logϑ(x) − B

 > ∑
q>x

(
log(

q
q − 1

) −
1
q

)
.

Let’s add the following formula to the both sides of the inequality,∑
q≤x

(
log(

q
q − 1

) −
1
q

)
and due to the theorem 1.6, we obtain that∑

q≤x

log(
q

q − 1
) − log logϑ(x) − B > H

because of

H =
∑
q≤x

(
log(

q
q − 1

) −
1
q

)
+

∑
q>x

(
log(

q
q − 1

) −
1
q

)
and ∑

q≤x

log(
q

q − 1
) =

∑
q≤x

1
q

+
∑
q≤x

(
log(

q
q − 1

) −
1
q

)
.

Let’s distribute it and remove B from the both sides:∑
q≤x

log(
q

q − 1
) > γ + log logϑ(x)

since H = γ − B. If we apply the exponentiation to the both sides of the inequality, then we have
that ∏

q≤x

q
q − 1

> eγ × logϑ(x)

which means that Nicolas(p) holds, where p is the greatest prime number such that p ≤ x. The
same happens in the reverse implication.
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Theorem 2.2. The Riemann Hypothesis is true if and only if the inequality $(x) > u(x) is
satisfied for all numbers x ≥ 3.

Proof. This is a direct consequence of theorems 1.1 and 2.1.

Theorem 2.3. If the inequality $(x) ≤ 0 is satisfied for some number x ≥ 3, then the Riemann
Hypothesis should be false.

Proof. This is an implication of theorems 1.7, 2.1 and 2.2.

Theorem 2.4. If the inequalities δ(x) ≤ 0 and S (x) ≥ 0 are satisfied for some number x ≥ 3,
then the Riemann Hypothesis should be false.

Proof. If the inequalities δ(x) ≤ 0 and S (x) ≥ 0 are satisfied for some number x ≥ 3, then we
obtain that $(x) ≤ 0 is also satisfied, which means that the Riemann Hypothesis should be false
according to the theorem 2.3.

Theorem 2.5.
lim
x→∞

$(x) = 0.

Proof. We know that limx→∞$(x) = 0 for the limits limx→∞ δ(x) = 0 and limx→∞
ϑ(x)

x = 1. In
this way, this is a consequence from the theorems 1.9 and 1.2.

Theorem 2.6. Under the assumption that∫ ∞

x

S (y) × (1 + log y)
y2 × log2 y

dy ≥
S (x)2

x2 × log x

is satisfied for some number x ≥ 121, then the Riemann Hypothesis should be false.

Proof. Under the assumption that∫ ∞

x

S (y) × (1 + log y)
y2 × log2 y

dy ≥
S (x)2

x2 × log x

for some number x ≥ 121, then we can deduce that∑
q≤x

1
q
≤ log log x + B +

S (x)
x × log x

−
S (x)2

x2 × log x

according to the theorem 1.10. Using the theorem 1.5, then we obtain that∑
q≤x

1
q
≤ log logϑ(x) + B

due to x ≥ 121. However, that would mean

$(x) =
∑
q≤x

1
q
− log logϑ(x) − B ≤ 0

and therefore, the Riemann Hypothesis should be false because of the theorem 2.3.
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Theorem 2.7. The inequality∫ ∞

x

S (y) × (1 + log y)
y2 × log2 y

dy ≥
S (x)2

x2 × log x

is satisfied for some number x ≥ 121 when S (x) ≥ 0.

Proof. By the theorem 1.3, we have that:

S (x)
x

=
ϑ(x) − x

x

<
(1 + 1

2×log x ) × x − x

x

=
x × ((1 + 1

2×log x ) − 1)

x

= (1 +
1

2 × log x
− 1)

=
1

2 × log x
< 1

for a number x ≥ 121. In this way, we have that 0 ≤ S (x)
x < 1 when S (x) ≥ 0. Consequently, we

obtain that S (x)
x ≥

S (x)2

x2 under the assumption that S (x) ≥ 0, since for every real number 0 ≤ z < 1,

the inequality z ≥ z2 is always satisfied. For that reason, we will have that S (x)
x×log x ≥

S (x)2

x2×log x .
However, we know that ∫ ∞

x

S (y) × (1 + log y)
y2 × log2 y

dy =
S (x)

x × log x
+ ε

such that ε could be a positive value which depends mostly on the number x ≥ 121 and S (x) ≥ 0.
In conclusion, the theorem is true for some number x ≥ 121 when S (x) ≥ 0.

Theorem 2.8. The Riemann Hypothesis is indeed false.

Proof. This is a direct consequence of theorems 1.4, 2.6 and 2.7.
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DPP, Paris 82 (1981) 207–218.

[3] J.-L. Nicolas, Petites valeurs de la fonction d’Euler, Journal of number theory 17 (3) (1983) 375–388.
doi:10.1016/0022-314X(83)90055-0.

[4] T. H. Grönwall, Some asymptotic expressions in the theory of numbers, Transactions of the American Mathematical
Society 14 (1) (1913) 113–122. doi:10.2307/1988773.

[5] J. B. Rosser, L. Schoenfeld, Approximate Formulas for Some Functions of Prime Numbers, Illinois Journal of
Mathematics 6 (1) (1962) 64–94. doi:10.1215/ijm/1255631807.

[6] D. J. Platt, T. S. Trudgian, On the first sign change of θ(x) − x, Math. Comput. 85 (299) (2016) 1539–1547.
doi:10.1090/mcom/3021.

5



[7] F. Mertens, Ein Beitrag zur analytischen Zahlentheorie., J. reine angew. Math. 1874 (78) (1874) 46–62.
doi:10.1515/crll.1874.78.46.
URL https://doi.org/10.1515/crll.1874.78.46
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des Nombres de Bordeaux 19 (2) (2007) 357–372. doi:10.5802/jtnb.591.

[9] G. Robin, Sur l’ordre maximum de la fonction somme des diviseurs, Séminaire Delange-Pisot-Poitou Paris 82 (1981)
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