Conference paper Open Access

Unsupervised Detection of Cancerous Regions in Histology Imagery using Image-to-Image Translation

Stepec, D.; Skocaj, D.

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  <controlfield tag="005">20210804134818.0</controlfield>
  <controlfield tag="001">5158712</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Ljubljana, Faculty of Computer and Information Science Vecna pot 113, 1000 Ljubljana, Slovenia</subfield>
    <subfield code="a">Skocaj, D.</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">8679311</subfield>
    <subfield code="z">md5:4d40a47f36769e459a391bf7d3b6af2d</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-04-29</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-ipc</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">1University of Ljubljana, Faculty of Computer and Information Science Vecna pot 113, 1000 Ljubljana, Slovenia</subfield>
    <subfield code="a">Stepec, D.</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Unsupervised Detection of Cancerous Regions in Histology Imagery using Image-to-Image Translation</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ipc</subfield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">826121</subfield>
    <subfield code="a">individualizedPaediatricCure: Cloud-based virtual-patient models for precision paediatric oncology</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Detection of visual anomalies refers to the problem of finding patterns in different imaging data that do not conform to the expected visual appearance and is a widely studied problem in different domains. Due to the nature of anomaly occurrences and underlying generating processes, it is hard to characterize them and obtain labeled data. Obtaining labeled data is especially difficult in biomedical applications, where only trained domain experts can provide labels, which often come in large diversity and complexity. Recently presented approaches for unsupervised detection of visual anomalies approaches omit the need for labeled data and demonstrate promising results in domains, where anomalous samples significantly deviate from the normal appearance. Despite promising results, the performance of such approaches still lags behind supervised approaches and does not provide a one-fits-all solution. In this work, we present an image-to-image translation-based framework that significantly surpasses the performance of existing unsupervised methods and approaches the performance of supervised methods in a challenging domain of cancerous region detection in histology imagery&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.5158711</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.5158712</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
All versions This version
Views 1818
Downloads 1111
Data volume 95.5 MB95.5 MB
Unique views 1818
Unique downloads 1111


Cite as