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Evaluation of the data handling pipeline of the

ASTRID framework
Guerino Lamanna, Matteo Repetto, and Alessandro Carrega

Abstract—Effective attack detection and security analytics rely
on the availability of timely and fine-grained information about
the evolving context of the protected environment. The data han-
dling process entails collection from heterogeneous sources, local
aggregation and transformation operations before transmission,
and finally collection and delivery to multiple processing engines
for analysis and correlation.

Many SIEM tools work according to the “funnel” principle:
gather as much data as possible and then filter it to keep the
relevant information. However, this might lead to unacceptable
overhead, especially when monitoring containerized environ-
ments. As part of our activity in ASTRID, we therefore conducted
experimental investigation on resource consumption of the data
handling pipeline, starting from embedded agents up to delivery
to the Context Broker.

Index Terms—Elastic stack, containers, monitoring, Kafka

I. INTRODUCTION

Effective and reliable detection of known and zero-day

attacks heavily relies on the knowledge of the relevant context,

which includes data, events, and measurements from the

execution environment. The more information is available,

the more the identification of attack patterns is likelihood.

As a matter of fact, many SIEM tools work according to

the “funnel” principle: gather as much data as possible and

then filter it to keep only the relevant information. When the

monitoring infrastructure is quite rigid and static, this is a safer

approach from the detection perspective: if some data are not

useful at a given moment, they may become essential in the

future, to detect a different type of attack or a variant.

Since there are virtually no limitations to the range of

monitoring and inspection aspects that may be considered,

the computational and communication overhead become easily

unpractical for any realistic scenario, especially for lightweight

containerized applications. Therefore the design of cyber-

security architectures has often been driven by the need to

balance the accuracy of the retrieved security context with the

overhead, which also affects the placement of analysis and

detection tasks within the system.

Chasing the objective of better efficiency and improved

awareness, ASTRID goes beyond static and rigid architectures,

by introducing more flexibility and dynamicity in the detection

process [1]. The specific objective is the ability to create a

capillary and pervasive context fabric for security functions

and data, which can be configured at run-time and hence
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can continuously adapt the depth of inspection to the current

detection needs. Based on this objective, we investigated the

overhead introduced by the data handling pipeline, including

both local agents, and delivery components in the Context

Broker (CB). Our purpose is to provide a useful guide to their

selection and usage at run time.

This document describes the main results and findings from

our experimental analysis of the data handling pipeline; it

extends the preliminary work in D2.1 [1] by moving from

virtual machines to containers and by including Kafka. Our

analysis mainly considered both performance and resource

usage. In the first case, we considered latency introduced

when collecting and delivering data, whereas the second aspect

was evaluated in terms of CPU consumption and memory

allocation. The scope is limited to components adopted from

other frameworks, because those developed within the project

are already discussed in separate documents [2], [3].

The rest of the paper is organized as follows. Section

II briefly remind the data handling pipeline implemented in

ASTRID, excerpted from D2.6 [4]. Section III describes the

experimental testbed used for all the following experiments.

Sections IV and V investigate the usage of Filebeat and

Metricbeat for retrieving applications logs and metrics, respec-

tively. Section VI reports measurements from the delivery bus,

namely Kafka. Finally, we give our conclusion in Section VII.

II. ASTRID DATA HANDLING PIPELINE

ASTRID builds on the Elastic Stack framework, which

consists of standalone components working harmoniously to

realize real-time data streaming. It covers several data handling

processes, from collection, to processing and storage, up to

visualization; it ensures security, scalability, and flexibility of

critical real-world applications.

As shown in Figure 4, data acquisition is managed by

Beats1, which collect heterogeneous data in a lightweight

manner and can be deployed as local agents. The collection

of logs (i.e., Filebeat) and metrics (i.e., Metricbeat) are the

main functionalities utilized by ASTRID. Beats report and

ship their collected data to a local Logstash instance for data

transformation and enhancement before delivering it to the re-

mote components. Logstash also can take inputs from external

sources, managing heterogeneous data inputs. It aggregates,

filters, and timestamps data from ASTRID-specific agents [3]

before pushing it to Kafka.

1Getting started with Beats, [Online]. Available: https://www.elastic.co/
guide/en/beats/libbeat/current/getting-started.html.
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Kafka [5] is used to streaming data into dedicated commu-

nication channels intended for different recipients. As shown

in the figure, data is sent to the Kafka bus and received by

both the centralized Logstash and security services that process

real-time information. Elasticsearch further indexes the data

for easier retrieval, which is utilized for data visualization

or offline analytics. Kibana allows data visualization and

navigation from the stack, and it is integrated into the ASTRID

dashboard.

The architecture supports both online streaming and offline

analytics, but only the streaming pattern has been implemented

and used in ASTRID. From an architectural perspective,

the most critical issues for a virtualized application can be

summarized as follows:

• Monitoring and aggregation agents must run as close as

possible to the virtual function. Though it is possible

to leverage specific capabilities in the infrastructure to

collect data, ASTRID follows an infrastructure-agnostic

approach and therefore places such agents in the same

virtual function. It is therefore fundamental that monitor-

ing and inspection operation does not affect the execution

of the main business logic.

• The collection bus represents a bottleneck for the whole

data handling pipeline. We do not discuss the practical

problems that come from Internet links, since this is an

aspect that must be taken into account by the user of

the ASTRID platform2. However, the Kafka bus may

impact the collection of large bulk of information in the

centralized platform, hence it is important to be aware of

any performance issues before the concrete deployment.

In the remaining of this paper we address the above issues

by investigating performance and scalability in our project

experimental testbed.

III. TESTED DESCRIPTION

We set up an experimental testbed for validation and iden-

tification of performance gaps. We did not use applications

from our Use Cases, because in that case it is more difficult

to simulate different working conditions; rather we deployed

common services that are expected to be present and that allow

to use the beats under investigation.

We considered two different services: an Apache web

server (monitored by Filebeat) and a MySQL database server

(monitored by Metricbeat). Both the main service and the

corresponding agent are standalone containers that run in the

same pod, together with an instance of Logstash and the LCP.

However, the latter is not considered in this evaluation, because

it is not involved in the data processing chain. Its performance

related to control and management operations are subject of a

parallel study [7]. We also deployed an instance of the Context

Broker in a separate pod, that collects all data.

All pods are deployed in a local testbed, made of 3

Kubernetes nodes equipped with 2x Intel Xeon CPU E5-2660

v4 @ 2.00GHz with 14 cores and hyperthreading enabled,

128 GB RAM, 64 GB SSD storage. The local connection is a

2A discussion on the impact of the Internet is given as appendix to D1.3
[6], mostly from the security perspective.

plain 1 Gbps Ethernet. We used the default configuration for

all containers (1 vCPU, 250 MB RAM).

The evaluation investigated how resource consumption

varies while changing the offered load and frequency of sam-

pling. Specifically, the evaluation was conducted by varying

the following parameters:

• the period of collection, which affects the latency to

access the context and in some cases the volume of traffic

generated over the network (for Metricbeat, because it

reports the current status at each request), from 1 to 20

seconds;

• the rate of requests to the Apache and MySQL servers,

which in some cases increase the volume of logs gener-

ated (Apache function, which records every access), from

1 to 1000 requests/s. We used jmeter3 and mysqlslap4 to

generate a variable amount of requests for Apache and

MySQL, respectively.

Additionally, we investigated how Kafka performs with a

variable number of messages, consumers, and producers.

IV. FILEBEAT

In case of Filebeat, the agent periodically scans the logs

generated by Apache and checks for new records to be sent

to the CB. In our testbed, Logstash adds a timestamp to each

log records, and this implies more processing in case of larger

workload.

A. CPU usage

Fig. 1 shows the average and standard deviation for CPU

usage5 of Apache, Filebeat, the local Logstash instance (named

Logstashbeat in the pictures) and the centralized Logstash

instance in the Context Broker. With a low rate of requests, the

agents uses about the same amount of CPU as the server that

they are monitoring; however, when the number of requests

increases, the overhead of the agents remains limited. The

slight increase is due to the large volume of logs to be

processed and transferred. Indeed, for Apache, a larger number

of requests implies more logs, hence more CPU is used to read

the data and send them to the Context Broker.

The Logstash instance in the CB raises CPU usage too,

but this is not a problem, because this runs in the ASTRID

platform, hence it does not impact the execution of virtual

services. Indeed, the two instances in our simple testbed

made the same thing (namely, they add a timestamp to the

message), but they use different input/output plugins. The

local instance reads data from a beat and writes to Kafka;

the CB instance reads from Kafka and writes to Elasticsearch.

Probably, the management of such plugins is not as efficient as

the Filebeat implementation. We conclude that the impact of

agents remains quite limited (below 10%), which is acceptable

in most practical cases. By comparing Filebeat and Logstash,

we conclude that the latter has a higher overhead, even if its

operation is simpler.

3https://jmeter.apache.org/.
4https://mariadb.com/kb/en/mysqlslap/.
5CPU usage is computed as the fraction of time the container runs,

according to measurements reported by Kubernetes.
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Fig. 1. Average and standard deviation for CPU usage under different load and polling conditions.

Finally, we compare the average CPU usage for all con-

tainers in the same pod (namely, Apache, Filebeat, Logstash)

in Figure 2. We see that the overhead of the agents is rather

limited (below 10% of the available CPU) in all conditions

but for the largest number of requests.

B. Memory allocation

Memory allocation is rather constants under the different

conditions for Apache and Filebeat, but largely increases for

Logstash, both local and remote instances. Fig. 3 shows that

beyond the greater average value, it is also quite unstable

during the experiments. Our understanding is that the current

implementation of Logstash is not suitable for lightweight

operation in cloud-native applications, because its memory

footprint is often bigger than the main application. In general,

it would be preferable to directly write to the Kafka bus with

Filebeat, if additional transformation operations are not strictly

necessary.

Also in this case we provide the cumulative memory alloca-

tion for the pod (Figure 4), which better highlights the impact

of Logstash.
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Fig. 2. Cumulative CPU usage by all containers in the same pod.

C. Latency

The last parameter that we considered is the processing

latency introduced by the Elastic chain. Figure 5 shows the

latency to gather data from the Apache log file by Filebeat,
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Fig. 3. Average and standard deviation for memory allocation under different load and polling conditions.
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Fig. 4. Cumulative memory allocation for the pod.

to move data from the Filebeat to the local Logstash instance,

and to transfer data to the CB. The latency is generally shorter

than a few seconds, but it exhibits a small increase with the

workload. As a matter of fact, the more the records in the

log file, the bigger the message(s) to be sent to the CB. The

handover between Filebeat and Logstash is the component of

the overall delay which is more sensitive to the increment of

the number of records.

The polling interval has a larger impact on the overall

latency. This is because Apache logs are read less frequently

when this internal increases, hence the latency from the

generation of the record to its availability in the centralized

platform increases. Fig. 5 shows that the collection of records

from the Apache logs is largely affected by this parameter,

due to the need of concurrent writes/reads to the same file by

different processes.

A greater latency in data collection is not a specific perfor-

mance limitation of the agents, but it may have side effects on

the timely of the detection. The polling interval must therefore

be selected case-by-case depending on the specific needs of

the detection process.

We finally provide an intuitive comparison of the average

latency in each pod in Figure 6.

V. METRICBEAT

The couple MySQL/Metricbeat works rather different than

the previous case. As a matter of fact, Filebeat periodically

collect logs, hence the amount of information is directly
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Fig. 5. Latency measured under different load and polling conditions.
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proportional to the number of records, which in turns come

from the requests. Instead, Metricbeat periodically queries

MySQL for given metrics, and the answer is always the same

size, independently from the current load. We expect this to

have an impact on the overall data handling pipeline.

A. CPU usage

Fig. 7 shows the average and standard deviation for CPU

usage of MySQL, Metricbeat, the local Logstash instance

(named Logstashbeat in the pictures) and the centralized

Logstash instance in the Context Broker. With a low rate of

requests (below 10 requests per second), CPU used by the

agents is comparable with the server they are monitoring;

however, when the number of requests increases, the overhead

of the agents remains limited. Differently from Apache, in

this case the CPU usage of MySQL becomes very high, even

beyond 100%. In our understanding, the high load put on the

server affects the precision of the measures, which anyway

should be intended as “very close to 100%.”6

Another meaningful difference with the Apache use case is

the CPU usage of Logstash. This is likely due to the fact that a

smaller and constant amount of information is reported in this

case. We conclude that the impact of agents remains quite

limited (below 10%), which is acceptable in most practical

cases.

6CPU usage is computed in the same way as for Apache, namely by using
the number of milliseconds the container ran. The percentage is then calculated
on the assumption that these measures are reported exactly every seconds by
Kubernetes, but likely this process is not precise under high-load conditions.
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Fig. 7. Average and standard deviation for CPU usage under different load and polling conditions.

Finally, we compare the average CPU usage for all contain-

ers in the same pod (namely, MySQL, Metricbeat, Logstash)

in Figure 7. We see that the overhead of the agents is rather

limited (below 10% of the available CPU) in all conditions,

similar to the Apache use case, but this time the relative impact

on MySQL is much lower, especially at high-load.

B. Memory allocation

Memory allocation is rather constants under the different

conditions for our agents, and slightly increases for MySQL

at higher loads. Fig. 9 shows that memory consumption for

MySQL is around one order of magnitude greater than Apache

(even if this may change in more complex scenarios), whereas

we got almost the same value for the agents in the two use

cases. Hence, the main findings about the issues in running

Logstash in virtualized functions also hold here.

Also in this case we provide the cumulative memory al-

location for the pod (Fig. 10). In this case, given the larger

memory allocation to MySQL, the impact of Logstash looks

more limited than with Apache, but still comparable with

resource usage of the main business function.
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C. Latency

For what concerns the latency, estimation of the latency

introduced by Metricbeat for collecting data was not possible

this time. Hence, Fig. 11 only shows the latency to move data
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Fig. 9. Average and standard deviation for memory allocation under different load and polling conditions.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 10 100 1000
1 10 100 1000

1 10 100 1000
1 10 100 1000

M
em

or
y 

al
lo

ca
tio

n 
[M

B
]

Load [reqs/sec]

logstashbeat metricbeat mysql

Poll: 20secPoll: 10secPoll: 5secPoll: 1sec

Fig. 10. Cumulative memory allocation for the pod.

from Metricbeat to the local Logstash instance and to transfer

data to the CB. The latency is generally around one second,

and this time does not increase with the workload or the

polling interval. Again, the reason is because the same amount

of information is collected, independently of the workload.

This is more or less the same behaviour of other agents used

in ASTRID, especially those related to network monitoring

(with the notable exception of flow collection).

The lower latency for the smaller polling interval (1 second)

appears an anomaly with respect to other data. The lower

value is due to the fact that sometimes Metricbeat packs two

samples and sends them together; the first sample experiences

the usual delay of around 1 second, but the second is avail-

able immediately afterwards, and has a latency of only 100

milliseconds. Eventually this lowers the total average of all

samples. The same effect was not observed for other polling

intervals, where samples are available with a quite constant

delay of 1.1 s. We do not know in detail both the lumberjack

protocol between Metricbeat and Logstash and the internal

implementation of Metricbeat; however, it seems that using

the same polling interval as the delivery delay creates some

sort of de-synchronization in the metric forwarding operations.

Similar to the previous case, the impact on transferring data

through the message bus is rather limited with respect to the

handover internal to the pod. This is more clear from the

comparison of the average latency in each pod, shown in Fig.

12.
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Fig. 11. Latency measured under different load and polling conditions.
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Fig. 12. Cumulative latency for the pod.

VI. KAFKA

Kafka is part of the CB pod and it is a potential bottleneck

because all messages from agents goes through this bus.

Indeed, also notifications from the detection algorithms share

the same Kafka bus, but their rate is expected to be negligible

with respect to traffic generated from agents.

We measured both CPU usage and memory allocation

when no messages are transmitted, with a rate of 1,000 and

1,000,000 messages per seconds and at the maximum speed

achievable by the generator (with packet size of 100 bytes).

To this aim, we used the tools available from Kafka (kafka-*-

perf-test suite7). A single producer/consumer was used in this

case. A single broker was used in our experiments, even if

Zookeeper would allow to scale to more instances.

Figure 13 shows how CPU usages increases with the number

of messages. We do not expect more than 100 agents to be

realistically available in the use-case of interest for the project.

In this worst case, therefore, up to 1,000 messages per second

from each agent will not use the CPU for more than 30% of

its time. We think this is more than acceptable, also taking

into account the measurements for Logstash in the previous

Sections and considering that the ASTRID platform would

likely run on dedicated hosts with at least 4-8 cores available

(it could be either a virtual machine or a physical server).

7https://docs.cloudera.com/runtime/7.2.10/kafka-managing/topics/
kafka-manage-cli-perf-test.html.
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Fig. 13. CPU usage and memory allocation for the Kafka container.

TABLE I
PERFORMANCE FOR DIFFERENT CONFIGURATIONS OF PARTITIONS, CONSUMERS AND PRODUCERS.

Partitions per topic Consumers/Producers pairs Msg size [byte] Throughput Latency
[Msgs/s] [MB/s] Avg [ms] Max [ms]

1 1
100 141643 13.51 45.2 407
1000 42517 40.55 519.15 654

2 2
100 141442 13.49 8.98 411
1000 62814 59.9 288.54 395

3 3
100 149031 14.21 15.82 417
1000 71736 68.41 241.26 414

With regard to memory allocation, only a few megabytes of

RAM are necessary, even at the highest rate, which makes this

solution perfectly scalable. We note that, quite oddly, memory

allocation decreases for higher rates. In our understanding, this

is due to the congestion of the bus (see the high level of CPU

usage), which blocks the reception of packets.

We then performed a stress test on Kafka when varying the

number of consumers and producers, also taking into account

packets of different size. In this case, messages are always

generated at the maximum rate achievable with the generator,

which yields to different performances in terms of number of

messages and bytes exchanged.

Table I shows that better efficiency is possible by transmit-

ting bigger packets, namely the data transfer rate is higher.

Unfortunately, this is not always possible. Data aggregation

should be performed at the producer side, for instance increas-

ing the polling interval, but this might introduce unacceptable

delays in case of rare data. We already discussed the impact

of larger polling intervals in Sec. IV.

As a general consideration, it seems that increasing the

partition number has a positive effect on data transfer when

multiple producers and consumers are present.

If, on the one hand, bigger packets improve data transmis-

sion rate, on the other side they lead to much higher delivery

delays. The difference between the average delay between

100-bytes and 1,000-bytes packets is more than an order of

magnitude. Overall, the differences in the maximum delays

are not so large, and are comparable in almost all scenarios.

VII. CONCLUSION

Our analysis largely confirmed the preliminary results we

got at the beginning of the project. Running standard beats in

the same pod as business functions increases resource usage.

From the computing perspective, the impact is rather low and

only marginally affects the operation of the application. In

general, resource consumption is bigger when the amount of

information to be collected is proportional to the workload

(e.g., application/system logs).

Memory allocation for Logstash is not negligible, and

requires far more resources than what is needed to run the main

function. In this respect, this component should be avoided

as much as possible, and more efficient solutions should be

found. In this perspective, the usage of eBPF represents a valid

alternative for performing simple data processing, even if it is

not suitable for more advanced data fusion and transformation

operations.

We also demonstrated that a single instance of the Kafka

broker is enough for most use-cases covered by the project.

As a matter of fact, the target size of virtual services foreseen

at the beginning of the project was around 10 components. We

estimated that Kafka can serve at least 100 nodes that generate

traffic at 1,000 messages per seconds each with a limited CPU

usage, which is more than enough for our target use cases.

However, this does not means that this is possible in any
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deployment scenario, because we did not take into account the

impact of Internet links. Low bandwidth and packet loss over

the Internet is a common problem for any distributed cyber-

security framework; to mitigate this problem, the ASTRID

platform should be deployed in the same virtualization infras-

tructure as the main service, as discussed in D1.3.
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