Dataset Restricted Access
Blickensdörfer, Lukas; Schwieder, Marcel; Pflugmacher, Dirk; Nendel, Claas; Erasmi, Stefan; Hostert, Patrick
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nmm##2200000uu#4500</leader> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2021-08-19</subfield> </datafield> <controlfield tag="005">20220428202713.0</controlfield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.5153046</subfield> </datafield> <controlfield tag="001">5153047</controlfield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire_data</subfield> <subfield code="o">oai:zenodo.org:5153047</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Detailed maps of agricultural landscapes are a valuable data source for manifold applications, such as environmental modelling, biodiversity monitoring or the support of agricultural statistics. Satellites from the European Copernicus program, especially, Sentinel-1 and Sentinel-2, as well as the Landsat missions operated by NASA/USGS, acquire data with a spatial resolution (10 m to 30 m) that is sufficient to identify field structures in complex agricultural landscapes. Time series of combined Sentinel-2 and Landsat data facilitate to differentiate crop types with a high thematic detail based on differences in land surface phenology. However, large data gaps due to frequent cloud cover may hamper such classification approaches.&nbsp;&nbsp;</p> <p>We thus combined dense interpolated times series of Sentinel-2A/B and Landsat data with monthly composites of Sentinel-1 backscatter data to overcome periods with high cloud contamination. To further account for regional variations along the agroecological gradient within Germany, we additionally included a broad set of spatially explicit environmental data in a random forest classification model.&nbsp;&nbsp;</p> <p>All optical satellite data were downloaded, pre-processed and structured in an analysis-ready data (ARD) cube using the open-source software FORCE - Framework for Operational Radiometric Correction for Environmental monitoring (Frantz, D., 2019; <a href="https://force-eo.readthedocs.io/en/latest/">https://force-eo.readthedocs.io/en/latest/</a> last accessed: 19. August 2021), before environmental and SAR data were included in the ARD cube.&nbsp;&nbsp;</p> <p>For each year (2017, 2018 and 2019) we trained an individual random forest model with 24 agricultural classes. Each model was independently validated with area adjusted overall accuracies of 80% (2017), 79% (2018), and 78% (2019). Further details regarding the data and methods used as well as class wise accuracies can be found in Blickensd&ouml;rfer et al. (2022).&nbsp;</p> <p>The final models were applied to areas in Germany that were defined as agricultural land in ATKIS DLM 2018 (Geobasisdaten: &copy; GeoBasis-DE / BKG (2018)). Post-processing of the final maps included applying a sieve filter, the exclusion of classes other than grasslands and small woody features above 900 m (based on the Digital Elevation Model for Germany BKG (2015)) and the exclusion of grapevine/hops areas that were not labelled as the respective permanent crop in ATKIS DLM (labelled as other agricultural areas in the final map).&nbsp;</p> <p>The maps are provided as GeoTiff files together with a QGIS legend file for visualization.&nbsp;</p> <p>Class catalogue:</p> <p>10 &nbsp;&nbsp; &nbsp;Grassland<br> 31 &nbsp;&nbsp; &nbsp;Winter wheat<br> 32 &nbsp;&nbsp; &nbsp;Winter rye<br> 33 &nbsp;&nbsp; &nbsp;Winter barley<br> 34 &nbsp;&nbsp; &nbsp;Other winter cereal<br> 41 &nbsp;&nbsp; &nbsp;Spring barley<br> 42 &nbsp;&nbsp; &nbsp;Spring oat<br> 43 &nbsp;&nbsp; &nbsp;Other spring cereal<br> 50 &nbsp;&nbsp; &nbsp;Winter rapeseed<br> 60 &nbsp;&nbsp; &nbsp;Legume<br> 70 &nbsp;&nbsp; &nbsp;Sunflower<br> 80 &nbsp;&nbsp; &nbsp;Sugar beet<br> 91 &nbsp;&nbsp; &nbsp;Maize<br> 92 &nbsp;&nbsp; &nbsp;Maize (grain)<br> 100&nbsp;&nbsp; &nbsp;Potato<br> 110&nbsp;&nbsp; &nbsp;Grapevine<br> 120&nbsp;&nbsp; &nbsp;Strawberry<br> 130&nbsp;&nbsp; &nbsp;Asparagus<br> 140&nbsp;&nbsp; &nbsp;Onion<br> 150&nbsp;&nbsp; &nbsp;Hops<br> 160&nbsp;&nbsp; &nbsp;Orchard<br> 181&nbsp;&nbsp; &nbsp;Carrot<br> 182&nbsp;&nbsp; &nbsp;Other vegetables<br> 555&nbsp;&nbsp; &nbsp;Small woody features<br> 999&nbsp;&nbsp; &nbsp;Other agricultural areas</p> <p>&nbsp;</p> <p>Blickensd&ouml;rfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., &amp; Hostert, P. (2022). Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment, 269, 112831</p> <p>BKG, Bundesamt f&uuml;r Kartographie und Geod&auml;sie (2015). Digitales Gel&auml;ndemodell Gitterweite 10 m. DGM10. https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/dgm10.pdf (last accessed: 19. August 2021).&nbsp;</p> <p>BKG, Bundesamt f&uuml;r Kartographie und Geod&auml;sie (2018). Digitales Basis-Landschaftsmodell.&nbsp;<br> https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/basis-dlm.pdf (last accessed: 19. August 2021).</p> <p>Frantz, D. (2019). FORCE&mdash;Landsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sensing, 11, 1124.</p> <p>&nbsp;</p> <p><a href="https://zenodo.org/record/5153047#.YhYwgpYxmUn">National-scale crop type maps for Germany </a>&copy; 2021 by Blickensd&ouml;rfer, Lukas; Schwieder, Marcel; Pflugmacher, Dirk; Nendel, Claas; Erasmi, Stefan; Hostert, Patrick is licensed under <a href="http://creativecommons.org/licenses/by/4.0/?ref=chooser-v1">CC BY 4.0. </a></p></subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Thünen Institute of Farm Economics, Bundesallee 63, 38116 Braunschweig, Germany</subfield> <subfield code="a">Schwieder, Marcel</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Geography Department, Humboldt Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany</subfield> <subfield code="a">Pflugmacher, Dirk</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374 Müncheberg, Germany</subfield> <subfield code="a">Nendel, Claas</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Thünen Institute of Farm Economics, Bundesallee 63, 38116 Braunschweig, Germany</subfield> <subfield code="a">Erasmi, Stefan</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Geography Department, Humboldt Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany</subfield> <subfield code="a">Hostert, Patrick</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">restricted</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">dataset</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Thünen Institute of Forest Ecosystems, Alfred-Moeller-Straße 1, 16225 Eberswalde, Germany</subfield> <subfield code="a">Blickensdörfer, Lukas</subfield> </datafield> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Agriculture</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Remote sensing</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Land cover</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Machine learning</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Maps</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">crop type</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Germany</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.5153047</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data (2017, 2018 and 2019)</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 3,929 | 3,929 |
Downloads | 815 | 815 |
Data volume | 305.2 GB | 305.2 GB |
Unique views | 2,804 | 2,804 |
Unique downloads | 268 | 268 |