Dataset Restricted Access
Blickensdörfer, Lukas; Schwieder, Marcel; Pflugmacher, Dirk; Nendel, Claas; Erasmi, Stefan; Hostert, Patrick
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.5153047</identifier> <creators> <creator> <creatorName>Blickensdörfer, Lukas</creatorName> <givenName>Lukas</givenName> <familyName>Blickensdörfer</familyName> <affiliation>Thünen Institute of Forest Ecosystems, Alfred-Moeller-Straße 1, 16225 Eberswalde, Germany</affiliation> </creator> <creator> <creatorName>Schwieder, Marcel</creatorName> <givenName>Marcel</givenName> <familyName>Schwieder</familyName> <affiliation>Thünen Institute of Farm Economics, Bundesallee 63, 38116 Braunschweig, Germany</affiliation> </creator> <creator> <creatorName>Pflugmacher, Dirk</creatorName> <givenName>Dirk</givenName> <familyName>Pflugmacher</familyName> <affiliation>Geography Department, Humboldt Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany</affiliation> </creator> <creator> <creatorName>Nendel, Claas</creatorName> <givenName>Claas</givenName> <familyName>Nendel</familyName> <affiliation>Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374 Müncheberg, Germany</affiliation> </creator> <creator> <creatorName>Erasmi, Stefan</creatorName> <givenName>Stefan</givenName> <familyName>Erasmi</familyName> <affiliation>Thünen Institute of Farm Economics, Bundesallee 63, 38116 Braunschweig, Germany</affiliation> </creator> <creator> <creatorName>Hostert, Patrick</creatorName> <givenName>Patrick</givenName> <familyName>Hostert</familyName> <affiliation>Geography Department, Humboldt Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany</affiliation> </creator> </creators> <titles> <title>National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data (2017, 2018 and 2019)</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2021</publicationYear> <subjects> <subject>Agriculture</subject> <subject>Remote sensing</subject> <subject>Land cover</subject> <subject>Machine learning</subject> <subject>Maps</subject> <subject>crop type</subject> <subject>Germany</subject> </subjects> <dates> <date dateType="Issued">2021-08-19</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Dataset"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5153047</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.5153046</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="info:eu-repo/semantics/restrictedAccess">Restricted Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Detailed maps of agricultural landscapes are a valuable data source for manifold applications, such as environmental modelling, biodiversity monitoring or the support of agricultural statistics. Satellites from the European Copernicus program, especially, Sentinel-1 and Sentinel-2, as well as the Landsat missions operated by NASA/USGS, acquire data with a spatial resolution (10 m to 30 m) that is sufficient to identify field structures in complex agricultural landscapes. Time series of combined Sentinel-2 and Landsat data facilitate to differentiate crop types with a high thematic detail based on differences in land surface phenology. However, large data gaps due to frequent cloud cover may hamper such classification approaches.&nbsp;&nbsp;</p> <p>We thus combined dense interpolated times series of Sentinel-2A/B and Landsat data with monthly composites of Sentinel-1 backscatter data to overcome periods with high cloud contamination. To further account for regional variations along the agroecological gradient within Germany, we additionally included a broad set of spatially explicit environmental data in a random forest classification model.&nbsp;&nbsp;</p> <p>All optical satellite data were downloaded, pre-processed and structured in an analysis-ready data (ARD) cube using the open-source software FORCE - Framework for Operational Radiometric Correction for Environmental monitoring (Frantz, D., 2019; <a href="https://force-eo.readthedocs.io/en/latest/">https://force-eo.readthedocs.io/en/latest/</a> last accessed: 19. August 2021), before environmental and SAR data were included in the ARD cube.&nbsp;&nbsp;</p> <p>For each year (2017, 2018 and 2019) we trained an individual random forest model with 24 agricultural classes. Each model was independently validated with area adjusted overall accuracies of 80% (2017), 79% (2018), and 78% (2019). Further details regarding the data and methods used as well as class wise accuracies can be found in Blickensd&ouml;rfer et al. (2022).&nbsp;</p> <p>The final models were applied to areas in Germany that were defined as agricultural land in ATKIS DLM 2018 (Geobasisdaten: &copy; GeoBasis-DE / BKG (2018)). Post-processing of the final maps included applying a sieve filter, the exclusion of classes other than grasslands and small woody features above 900 m (based on the Digital Elevation Model for Germany BKG (2015)) and the exclusion of grapevine/hops areas that were not labelled as the respective permanent crop in ATKIS DLM (labelled as other agricultural areas in the final map).&nbsp;</p> <p>The maps are provided as GeoTiff files together with a QGIS legend file for visualization.&nbsp;</p> <p>Class catalogue:</p> <p>10 &nbsp;&nbsp; &nbsp;Grassland<br> 31 &nbsp;&nbsp; &nbsp;Winter wheat<br> 32 &nbsp;&nbsp; &nbsp;Winter rye<br> 33 &nbsp;&nbsp; &nbsp;Winter barley<br> 34 &nbsp;&nbsp; &nbsp;Other winter cereal<br> 41 &nbsp;&nbsp; &nbsp;Spring barley<br> 42 &nbsp;&nbsp; &nbsp;Spring oat<br> 43 &nbsp;&nbsp; &nbsp;Other spring cereal<br> 50 &nbsp;&nbsp; &nbsp;Winter rapeseed<br> 60 &nbsp;&nbsp; &nbsp;Legume<br> 70 &nbsp;&nbsp; &nbsp;Sunflower<br> 80 &nbsp;&nbsp; &nbsp;Sugar beet<br> 91 &nbsp;&nbsp; &nbsp;Maize<br> 92 &nbsp;&nbsp; &nbsp;Maize (grain)<br> 100&nbsp;&nbsp; &nbsp;Potato<br> 110&nbsp;&nbsp; &nbsp;Grapevine<br> 120&nbsp;&nbsp; &nbsp;Strawberry<br> 130&nbsp;&nbsp; &nbsp;Asparagus<br> 140&nbsp;&nbsp; &nbsp;Onion<br> 150&nbsp;&nbsp; &nbsp;Hops<br> 160&nbsp;&nbsp; &nbsp;Orchard<br> 181&nbsp;&nbsp; &nbsp;Carrot<br> 182&nbsp;&nbsp; &nbsp;Other vegetables<br> 555&nbsp;&nbsp; &nbsp;Small woody features<br> 999&nbsp;&nbsp; &nbsp;Other agricultural areas</p> <p>&nbsp;</p> <p>Blickensd&ouml;rfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., &amp; Hostert, P. (2022). Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment, 269, 112831</p> <p>BKG, Bundesamt f&uuml;r Kartographie und Geod&auml;sie (2015). Digitales Gel&auml;ndemodell Gitterweite 10 m. DGM10. https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/dgm10.pdf (last accessed: 19. August 2021).&nbsp;</p> <p>BKG, Bundesamt f&uuml;r Kartographie und Geod&auml;sie (2018). Digitales Basis-Landschaftsmodell.&nbsp;<br> https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/basis-dlm.pdf (last accessed: 19. August 2021).</p> <p>Frantz, D. (2019). FORCE&mdash;Landsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sensing, 11, 1124.</p> <p>&nbsp;</p> <p><a href="https://zenodo.org/record/5153047#.YhYwgpYxmUn">National-scale crop type maps for Germany </a>&copy; 2021 by Blickensd&ouml;rfer, Lukas; Schwieder, Marcel; Pflugmacher, Dirk; Nendel, Claas; Erasmi, Stefan; Hostert, Patrick is licensed under <a href="http://creativecommons.org/licenses/by/4.0/?ref=chooser-v1">CC BY 4.0. </a></p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 3,996 | 3,996 |
Downloads | 815 | 815 |
Data volume | 305.2 GB | 305.2 GB |
Unique views | 2,860 | 2,860 |
Unique downloads | 268 | 268 |