Dataset Restricted Access

National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data (2017, 2018 and 2019)

Blickensdörfer, Lukas; Schwieder, Marcel; Pflugmacher, Dirk; Nendel, Claas; Erasmi, Stefan; Hostert, Patrick


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.5153047">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Dataset"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.5153047</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.5153047"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Blickensdörfer, Lukas</foaf:name>
        <foaf:givenName>Lukas</foaf:givenName>
        <foaf:familyName>Blickensdörfer</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Thünen Institute of Forest Ecosystems, Alfred-Moeller-Straße 1, 16225 Eberswalde, Germany</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Schwieder, Marcel</foaf:name>
        <foaf:givenName>Marcel</foaf:givenName>
        <foaf:familyName>Schwieder</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Thünen Institute of Farm Economics, Bundesallee 63, 38116 Braunschweig, Germany</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Pflugmacher, Dirk</foaf:name>
        <foaf:givenName>Dirk</foaf:givenName>
        <foaf:familyName>Pflugmacher</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Geography Department, Humboldt Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Nendel, Claas</foaf:name>
        <foaf:givenName>Claas</foaf:givenName>
        <foaf:familyName>Nendel</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374 Müncheberg, Germany</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Erasmi, Stefan</foaf:name>
        <foaf:givenName>Stefan</foaf:givenName>
        <foaf:familyName>Erasmi</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Thünen Institute of Farm Economics, Bundesallee 63, 38116 Braunschweig, Germany</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Hostert, Patrick</foaf:name>
        <foaf:givenName>Patrick</foaf:givenName>
        <foaf:familyName>Hostert</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Geography Department, Humboldt Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data (2017, 2018 and 2019)</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2021</dct:issued>
    <dcat:keyword>Agriculture</dcat:keyword>
    <dcat:keyword>Remote sensing</dcat:keyword>
    <dcat:keyword>Land cover</dcat:keyword>
    <dcat:keyword>Machine learning</dcat:keyword>
    <dcat:keyword>Maps</dcat:keyword>
    <dcat:keyword>crop type</dcat:keyword>
    <dcat:keyword>Germany</dcat:keyword>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2021-08-19</dct:issued>
    <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/>
    <owl:sameAs rdf:resource="https://zenodo.org/record/5153047"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/5153047</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.5153046"/>
    <dct:description>&lt;p&gt;Detailed maps of agricultural landscapes are a valuable data source for manifold applications, such as environmental modelling, biodiversity monitoring or the support of agricultural statistics. Satellites from the European Copernicus program, especially, Sentinel-1 and Sentinel-2, as well as the Landsat missions operated by NASA/USGS, acquire data with a spatial resolution (10 m to 30 m) that is sufficient to identify field structures in complex agricultural landscapes. Time series of combined Sentinel-2 and Landsat data facilitate to differentiate crop types with a high thematic detail based on differences in land surface phenology. However, large data gaps due to frequent cloud cover may hamper such classification approaches.&amp;nbsp;&amp;nbsp;&lt;/p&gt; &lt;p&gt;We thus combined dense interpolated times series of Sentinel-2A/B and Landsat data with monthly composites of Sentinel-1 backscatter data to overcome periods with high cloud contamination. To further account for regional variations along the agroecological gradient within Germany, we additionally included a broad set of spatially explicit environmental data in a random forest classification model.&amp;nbsp;&amp;nbsp;&lt;/p&gt; &lt;p&gt;All optical satellite data were downloaded, pre-processed and structured in an analysis-ready data (ARD) cube using the open-source software FORCE - Framework for Operational Radiometric Correction for Environmental monitoring (Frantz, D., 2019; &lt;a href="https://force-eo.readthedocs.io/en/latest/"&gt;https://force-eo.readthedocs.io/en/latest/&lt;/a&gt; last accessed: 19. August 2021), before environmental and SAR data were included in the ARD cube.&amp;nbsp;&amp;nbsp;&lt;/p&gt; &lt;p&gt;For each year (2017, 2018 and 2019) we trained an individual random forest model with 24 agricultural classes. Each model was independently validated with area adjusted overall accuracies of 80% (2017), 79% (2018), and 78% (2019). Further details regarding the data and methods used as well as class wise accuracies can be found in Blickensd&amp;ouml;rfer et al. (2022).&amp;nbsp;&lt;/p&gt; &lt;p&gt;The final models were applied to areas in Germany that were defined as agricultural land in ATKIS DLM 2018 (Geobasisdaten: &amp;copy; GeoBasis-DE / BKG (2018)). Post-processing of the final maps included applying a sieve filter, the exclusion of classes other than grasslands and small woody features above 900 m (based on the Digital Elevation Model for Germany BKG (2015)) and the exclusion of grapevine/hops areas that were not labelled as the respective permanent crop in ATKIS DLM (labelled as other agricultural areas in the final map).&amp;nbsp;&lt;/p&gt; &lt;p&gt;The maps are provided as GeoTiff files together with a QGIS legend file for visualization.&amp;nbsp;&lt;/p&gt; &lt;p&gt;Class catalogue:&lt;/p&gt; &lt;p&gt;10 &amp;nbsp;&amp;nbsp; &amp;nbsp;Grassland&lt;br&gt; 31 &amp;nbsp;&amp;nbsp; &amp;nbsp;Winter wheat&lt;br&gt; 32 &amp;nbsp;&amp;nbsp; &amp;nbsp;Winter rye&lt;br&gt; 33 &amp;nbsp;&amp;nbsp; &amp;nbsp;Winter barley&lt;br&gt; 34 &amp;nbsp;&amp;nbsp; &amp;nbsp;Other winter cereal&lt;br&gt; 41 &amp;nbsp;&amp;nbsp; &amp;nbsp;Spring barley&lt;br&gt; 42 &amp;nbsp;&amp;nbsp; &amp;nbsp;Spring oat&lt;br&gt; 43 &amp;nbsp;&amp;nbsp; &amp;nbsp;Other spring cereal&lt;br&gt; 50 &amp;nbsp;&amp;nbsp; &amp;nbsp;Winter rapeseed&lt;br&gt; 60 &amp;nbsp;&amp;nbsp; &amp;nbsp;Legume&lt;br&gt; 70 &amp;nbsp;&amp;nbsp; &amp;nbsp;Sunflower&lt;br&gt; 80 &amp;nbsp;&amp;nbsp; &amp;nbsp;Sugar beet&lt;br&gt; 91 &amp;nbsp;&amp;nbsp; &amp;nbsp;Maize&lt;br&gt; 92 &amp;nbsp;&amp;nbsp; &amp;nbsp;Maize (grain)&lt;br&gt; 100&amp;nbsp;&amp;nbsp; &amp;nbsp;Potato&lt;br&gt; 110&amp;nbsp;&amp;nbsp; &amp;nbsp;Grapevine&lt;br&gt; 120&amp;nbsp;&amp;nbsp; &amp;nbsp;Strawberry&lt;br&gt; 130&amp;nbsp;&amp;nbsp; &amp;nbsp;Asparagus&lt;br&gt; 140&amp;nbsp;&amp;nbsp; &amp;nbsp;Onion&lt;br&gt; 150&amp;nbsp;&amp;nbsp; &amp;nbsp;Hops&lt;br&gt; 160&amp;nbsp;&amp;nbsp; &amp;nbsp;Orchard&lt;br&gt; 181&amp;nbsp;&amp;nbsp; &amp;nbsp;Carrot&lt;br&gt; 182&amp;nbsp;&amp;nbsp; &amp;nbsp;Other vegetables&lt;br&gt; 555&amp;nbsp;&amp;nbsp; &amp;nbsp;Small woody features&lt;br&gt; 999&amp;nbsp;&amp;nbsp; &amp;nbsp;Other agricultural areas&lt;/p&gt; &lt;p&gt;&amp;nbsp;&lt;/p&gt; &lt;p&gt;Blickensd&amp;ouml;rfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., &amp;amp; Hostert, P. (2022). Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment, 269, 112831&lt;/p&gt; &lt;p&gt;BKG, Bundesamt f&amp;uuml;r Kartographie und Geod&amp;auml;sie (2015). Digitales Gel&amp;auml;ndemodell Gitterweite 10 m. DGM10. https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/dgm10.pdf (last accessed: 19. August 2021).&amp;nbsp;&lt;/p&gt; &lt;p&gt;BKG, Bundesamt f&amp;uuml;r Kartographie und Geod&amp;auml;sie (2018). Digitales Basis-Landschaftsmodell.&amp;nbsp;&lt;br&gt; https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/basis-dlm.pdf (last accessed: 19. August 2021).&lt;/p&gt; &lt;p&gt;Frantz, D. (2019). FORCE&amp;mdash;Landsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sensing, 11, 1124.&lt;/p&gt; &lt;p&gt;&amp;nbsp;&lt;/p&gt; &lt;p&gt;&lt;a href="https://zenodo.org/record/5153047#.YhYwgpYxmUn"&gt;National-scale crop type maps for Germany &lt;/a&gt;&amp;copy; 2021 by Blickensd&amp;ouml;rfer, Lukas; Schwieder, Marcel; Pflugmacher, Dirk; Nendel, Claas; Erasmi, Stefan; Hostert, Patrick is licensed under &lt;a href="http://creativecommons.org/licenses/by/4.0/?ref=chooser-v1"&gt;CC BY 4.0. &lt;/a&gt;&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/RESTRICTED"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/restrictedAccess">
        <rdfs:label>Restricted Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.5153047"/>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
3,905
815
views
downloads
All versions This version
Views 3,9053,905
Downloads 815815
Data volume 305.2 GB305.2 GB
Unique views 2,7872,787
Unique downloads 268268

Share

Cite as