This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2918798, IEEE
Transactions on Parallel and Distributed Systems

Accelerating Atmospheric Chemical Kinetics for
Climate Simulations

Michail Alvanos and Theodoros Christoudias

Abstract—The study of atmospheric chemistry-climate interactions is one of today’s great computational challenges. Advances in the
architecture of Graphics Processing Units (GPUs) in both raw computational power and memory bandwidth sparked the interest for
General-Purpose computing on graphics accelerators in scientific applications. However, the introduction of GPUs in the High
Performance Computing (HPC) landscape increased the complexity of software development, due to the inherent heterogeneity
requirements of programming models and design approaches, creating a gap in uptake and attainable performance in the presently
available scientific community codes. This paper provides an overview of the challenges encountered when using GPU accelerators to
achieve optimal performance to calculate the kinetics of chemical tracers in climate models, the techniques used to address them and
the insights gained from the process. The paper presents the development of a chemical kinetics code-to-code parser to automatically
generate chemical kinetics calculations on three different generations of GPU accelerators (M2070, K80, and P100). The accelerated
portion of the application achieves a speedup of up to 22x, equivalent to performance gains of +19% up to +90% compared with the
processor-only version, when using a cluster of 8 Nodes with dual Intel E5-2680 v3 processor and a Kepler architecture (K80), allowing

faster completion of the simulations. The paper also provides practical insights and relevant considerations for the development and

acceleration of complex applications.

Index Terms—High Performance Computing, Heterogeneous systems, GPU acceleration, Climate Simulation

1 INTRODUCTION

The study of atmospheric chemistry-climate interactions
represents an important and, at the same time, a demanding
task of global Earth system modelling. Advancements in
hardware architectures can greatly improve not only the
spatial and temporal resolution of models but also the
representation of key processes. With the expected advent of
Exascale supercomputers, Earth System Models can achieve
even higher resolutions and provide more accurate climate
projections. Preparing the models and associated tools for
the current and future High Performance Computing (HPC)
architectures is a great challenge for the scientific commu-
nity.

Researchers use Chemistry-Climate Models (CCMs) to
understand the scientific and policy perspectives emerging
from climate change and ambient air quality. Chemical
kinetics is the study of chemical reactions, including their
rates, the effect of relevant variables and formation of inter-
mediates. In CCM simulations the numerical integration by
chemical kinetics solvers can take up to 90% of execution
time [1], prohibiting the use of complex chemical mecha-
nisms in high-resolution simulations. Tackling this compu-
tational challenge can have far-reaching applications as the
underlying chemical kinetics find use in different scientific
fields, including biological systems chemistry, stratospheric
ozone destruction, food decomposition, and combustion.

Current and future HPC technology development im-
poses new challenges and constraints. New programming
models, such as the accelerator extensions of OpenMP [2]

e Michail Alvanos and Theodoros Christoudias are with The Cyprus Insti-
tute, 20 Konstantinou Kavafi Street, 2121, Aglantzia, Cyprus
E-mail: malvanos@gmail.com, christoudias@cyi.ac.cy

0000-0000/00/$00.00 © 2017 IEEE

promise better portability and better performance compared
with previous ad hoc approaches. The advances in the
architecture of Graphics Processing Units (GPUs) in both
raw computational power and memory bandwidth sparked
the interest in General-purpose computing on GPUs for
scientific applications. However, the introduction of GPUs
in the HPC landscape increased the complexity of soft-
ware development, due to the inherent heterogeneity in
programming models and design approaches, creating a gap
in uptake and limiting attainable performance in presently
available community codes [3]. Programming a GPU accel-
erator can be a demanding and error-prone process that
requires specially designed programming models, such as
CUDA [4] and OpenCL [5].

This paper describes a method for accelerating, using
GPUs, the Ordinary Differential Equations (ODE) solvers
that represent the chemical processes in the climate models
(chemical kinetics calculations). The paper also provides in-
sights into the required effort and common pitfalls encoun-
tered in the process. The method is applied to the global
Atmosphere-Chemistry model ECHAM/MESSy (EMAC)
that includes sub-models describing the tropospheric and
middle atmosphere processes and their interaction with
oceans, land, and human influences [6]. Component con-
tributions of this work include:

e A source-to-source parser that processes the chemi-
cal kinetics solvers and produces CUDA accelerated
code to utilize the available GPUs in modern HPC
facilities.

e A thorough quantitative performance study with a
comparison of the accelerated and non-accelerated
application. The experimental evaluation with the
EMAC model indicates that the use of GPU accel-

Published by the IEEE Computer Society

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2918798, IEEE

Transactions on Parallel and Distributed Systems

erators can reduce the overall application runtime
between 17% up to 50% under realistic scenarios.

o A list of our experiences, the common pitfalls, and
our suggestions for accelerating climate models or
developing future accelerated climate models.

The paper is organized as follows: Sec. 2 describes the
EMAC/MECCA frameworks, and the performance of the
application. Sec. 3 discusses previous work that is related to
this research. Sec. 4 presents the design considerations for
implementing the parser, the implementation of the paral-
lelization, the GPU-specific optimizations, including mem-
ory optimizations, control code restructuring, and refactor-
ing of the EMAC source code. An evaluation of the resulting
GPU accelerated climate model appear in Sec. 5. Sec. 6
presents our experiences from porting the application. We
summarize the main outcomes, present our conclusions, and
future plans in Sec. 7.

2 BACKGROUND
2.1 Climate models

Climate models use mathematical equations to describe
and simulate the interactions of the important ‘drivers’ of
the climate system: the atmosphere, oceans, land surface,
ice, and solar radiation. Developing climate applications
with high resolution that efficiently utilize the newest high-
performance architectures will allow for skilled global and
regional climate prediction. Accurate knowledge of the fu-
ture climate will, in turn, provide valuable tools to enable
informed policy planning for climate change adaptation and
impacts mitigation. Although current HPC architectures can
offer a tremendous amount of raw computational power,
climate models are struggling to achieve the required scala-
bility and resolution to accurately predict the future climate
and thus render important benefits to the society.

2.2 The EMAC framework

The numerical global atmosphere-chemistry model EMAC
(ECHAM/MESSy Atmospheric Chemistry) is a modular
global model system that simulates the chemistry and dy-
namics of the troposphere and stratosphere. The model
system includes modules that describe atmospheric pro-
cesses and their interaction with oceans, land and human
influences. The chemical kinetics module simulates the cal-
culation of atmospheric chemical species concentrations and
their interaction with radiation, the land and ocean.

For parallelization, EMAC uses the Message Passing
Interface (MPI) standard to split the workload horizontally
between processes in a rectangular decomposition along
the latitudinal and longitudinal dimensions. The EMAC
atmospheric dynamical circulation component only scales
up to approximately a few hundred cores [1], due to i) the
poor strong scaling efficiency of the ECHAMS dynamical
core, and ii) the workload imbalance created by the different
modules.

2.3 Chemical Kinetics

Atmospheric chemistry investigates the chemical interaction
between elements in the Earth’s atmosphere. The underly-
ing chemical kinetics find application in different scientific

1080 1250 1419 1589 1758 1928

Fig. 1. Number of integration steps for each column during chemical
kinetics calculation.

fields including climate prediction, meteorology, physics,
oceanography, and geology. The EMAC chemical kinetics
module employs the Kinetic Pre-processor (KPP) [7] open
source general analysis tool to produce the chemical mecha-
nism. The input to KPP comprises a set of chemical reactions
and their rate coefficients, and the produced output is either
FORTRAN or C code that integrates the time evolution
of chemical species. EMAC uses a modified version of the
KPP with additional pre-processing components to optimise
performance specifically for climate simulations (known as
KP4).

2.4 Performance

The chemical kinetics calculations constitute one of the most
severe sources of imbalance between parallel processing el-
ements. Fig. 1 presents the cumulative number of execution
steps required for the integration process in each model
vertical column in a typical configuration. The adaptive
time-step integrator exhibits a non-uniform runtime caused
by photochemistry during varying light intensity at sunrise
and sunset. In addition, natural and anthropogenic emis-
sions also cause imbalance between different cells inside
each column and between columns and MPI processes [1].
The application uses barriers to synchronize all the MPI
processes at each model time step. This introduces idle
time in the fastest processes while waiting for the slowest
process to finish, wasting resources and elongating time to
completion.

For a typical climate model chemical mechanism with
155 species and 310 chemical reactions, the chemical kinetics
calculations take ~70% of the execution time [1]. Fig. 2
shows the time breakdown of the EMAC application for up
to 192 processes using a dual socket system equipped with
two 12-core Intel Xeon E5-2680 v3 CPUs. The convection,
advection, and scavenging components are responsible for
the atmospheric circulation and dynamics of the climate
model. Chemical kinetics account for 73% of the total time
in serial configuration and 30% when running with 192
processes. Communication burdens the performance over
a large number of processors. Most of the time spent in
the kernel module is due to the processing by network
driver of the small messages responsible for the EMAC
communication.

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2918798, IEEE

% Time

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Parallel and Distributed Systems

1004 — 1 /1 1 1 1
80
1 Chemical
604 — MPI
I Linux Kernel
= Memory Ops
— Convection
—— == Advection
40+ Scavenging
=3 Other
2 g
O o T o1 o1
S o & & Co Fo o
\Q\ Q’:\\{D QKOO Q@ vq@éobz Q@o& @082] Qkoo&b
Q AN O AN A

Fig. 2. Strong scaling execution time breakdown of the CPU-only EMAC
application using chemical kinetics. The Convection, Advection, and
Scavenging modules are responsible for the physics and dynamics of
the climate model.

3 RELATED WORK

Numerous efforts are documented in the literature on how
to improve the performance of the climate-chemistry model
simulations, specifically targeting chemical kinetics.

Initial efforts to improve the performance involved the
introduction of sparse linear algebra optimisations [8], [9].
Only a fraction of the kinetics matrices is non-zero during
the integration process of chemical kinetics, minimizing
the number of necessary operations. The sparsity structure
depends only on the chemical mechanism selected at compi-
lation and remains unchanged during runtime. This allows
optimization of the code by unrolling loops and removing
indirect memory access.

A common approach to improve the performance is to
parallelize the computation of chemical kinetics at the grid-
point level [10], [11]. Source code modifications with the ad-
dition of OpenMP [2] directives exploit hybrid parallelism.
The application assigns cells to individual threads to allow
embarrassingly parallel execution of the chemical solvers, as
there are no inter-dependencies in chemical kinetic calcula-
tions during a simulation time-step. The biggest drawback
of this approach is the workload imbalance created by
photochemical processes in the lower stratosphere [12].

Commercial approaches using accelerated fine-grained
parallelism are also available [13]. However, these ap-
proaches exhibit limited parallelism and strong imbalance.
Moreover, they are suitable only when the number of ele-
ments and chemical reactions are sufficiently large, beyond
the chemical mechanism complexity of climate models.

Researchers use GPU accelerators to improve the perfor-
mance of Earth system models. The ultra-high resolution
global atmospheric circulation model NICAM [14] uses
GPU accelerators for the shallow water computations (in
the Dynamics module) [15], [16]. Components of the com-
munity Weather Research and Forecasting Model (WRF)
were accelerated with GPUs. These include parts of the

3

dynamics [17] and the radiation modules [18]. The ACME-
Atmosphere model [19], [20] offloads the dynamics of the
weather prediction to GPUs by refactoring the code us-
ing the CUDA programming model and OpenACC di-
rectives. Both of these approaches require extensive data
layout and loop restructuring in order to obtain reasonable
performance. Researchers have also accelerated the Non-
Hydrostatic Weather Model ASUCA [15], GEOS-5 [21], and
GRAPES [22] by using the CUDA programming model.

The Non-Hydrostatic Icosahedral Model (NIM) [23], [24]
is designed and developed for massively parallel proces-
sors, using OpenACC directives to accelerate the code. The
COSMO limited-area numerical weather prediction and the
climate model were ported on GPU accelerators [25], [26].
The researchers refactored the code to use OpenACC com-
piler directives for most of the modules. These approaches
require OpenACC support from the compiler that is not
available in all compiler tool-chains used in High Perfor-
mance Computing facilities.

Researchers rewrote the dynamics module of the
COSMO limited-area numerical weather in CUDA, using
the STELLA [27] domain-specific language for stencil codes
on structured grids. Search and optimization techniques can
also auto-tune 3D stencil (nearest-neighbor) computations
on GPUs [28]. However, none of these implementations
include consideration of atmospheric chemistry, or the ac-
celeration of chemical kinetics components. Our study con-
centrates on solving the stiff ordinary differential equation
(ODE) system describing atmospheric chemistry, with no
nearest-neighbour computation that is suited to stencil opti-
mization techniques.

4 ACCELERATING CHEMICAL KINETICS

This section presents the design considerations, the im-
plementation of the source-to-source parser, including an
overview of performance optimizations, and the challenges
addressed during the development.

4.1

The implementation targets HPC machines equipped with
Nvidia CUDA compatible accelerators. We decided to use
the CUDA programming model [4] because the vendor pro-
vides strong debugging support and improved performance
when using the CUDA compiler framework compared to
other programming models, such as OpenCL [29].

As discussed in section 2, chemical mechanisms list the
chemical reactions and their rate coefficients as input in
domain-specific language. A modified KPP [7] utility (KP4)
generates the FORTRAN code that computes the time evolu-
tion of chemical species from the mechanism. Subsequently,
the code produced is compiled and linked with the EMAC
model, with calls in the model time integration loop. To
accelerate the produced FORTRAN code, a developer can
use four different approaches, as presented in table 1. We
took into consideration the advantages and disadvantages
of each methodology regarding a cost-effective develop-
ment with long-term maintenance sustainability, while at
the same time being end-user friendly to ease on-boarding
and promote adoption.

Design Considerations

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2918798, IEEE

Transactions on Parallel and Distributed Systems

Methodology Advantages

Disadvantages

Modify KP4 to directly produce CUDA code.

Covers all potential chemical mechanisms.

Requires long-term commitment from devel-
opers to keep KP4 up-to-date.

Transform FORTRAN to CUDA through
compiler framework (e.g. ROSE).

Robust method, does not require modifying
the EMAC source code [30].

Requires additional software packages. Li-
cense issues.

Accelerate the chemical calculations with
FORTRAN directives (e.g. OpenCL) or novel
programming model (e.g. dCUDA).

Requires limited effort [31].

Performance can be limited [28], [32]. Not all
HPC sites offer library support.

Use intermediate code to refactor the
machine-produced FORTRAN code to
CUDA.

Portable in many HPC environments. Re-
quires minimal effort to add features.

Output code may require modifications for
compilation.

TABLE 1
Advantages and Disadvantages of each method for accelerating the code.

The KP4, a specialized version of KPP for EMAC, re-
quires extensive modifications for producing CUDA com-
patible code. In addition, source code modifications in a
production-ready climate model require extensive testing
and review by the maintainers, hindering rapid develop-
ment cycles. Thus, we decided to create a parser that a
user can run, before compiling the application, to minimize
changes in the EMAC application source code repository.

Compiler frameworks and programming models, such
as ROSE [30] and dCUDA [31], can improve the robust-
ness of the output code and give the opportunity for fur-
ther transformations to improve the performance. However,
compiler frameworks require additional software package
dependencies that are not always available in HPC envi-
ronments. Thus, we decided not to use any specialized
compiler frameworks to keep the implementation simple
and portable. It is important for this research community ap-
plication to provide a simple utility for acceleration without
requiring the distribution of additional software packages
with different and often proprietary licenses.

An alternative method, used for different accelera-
tors [1], was the insertion of directives. This approach re-
quires minimum effort and the produced code is relatively
easy to maintain. However, this approach would still require
the user to modify the source code in order to successfully
run the application and achieve substantial performance
benefits. Programming models using directives, such as the
OpenACC [33], [34], [35], are helpful in simple configura-
tions that do not require significant source code refactoring,
but can be limiting regarding achievable performance in
complex codes. Not all available compilers support the
directives for acceleration and they are not mature enough,
in terms of performance, to be considered in a production
environment.

Our approach uses a source-to-source parser written
in Python, to transform the FORTRAN-produced code to
CUDA-accelerated. This approach keeps the implementa-
tion tailored but simple, and (mostly) independent from
the changes in the KP4 or EMAC application. It does not
introduce new library requirements, and allows to select
an open software license that is still compatible with the
EMAC application end-user license agreement. The main
drawback is that the tool may sometimes, in the case of
complex chemistry, produce non-compiling source code,
which requires additional modifications by the user. Finally,
even though the KP4 utility is mature and its source code
stable, the parser is still susceptible to potential significant

changes in the future.

4.2 Implementation

The code is distributed with the EMAC model as a utility
to transform the code after generating the chemistry and
before compiling. The parser modifies the KPP Fortran
source file and places a single call to the CUDA object that
contains a wrapper for issuing the accelerator kernels and
the accelerator code. Alvanos et al. describe in detail the
source-to-source parser software implementation [36].

The parser first strips the FORTRAN code of unneces-
sary elements such as comments and translates statements
and variables into C equivalent code. It then constructs
the required GPU data structures subdividing in runtime-
specified arrays of columns in the atmosphere, with the
memory of each array transferred to the GPU global mem-
ory. Temporary arrays are allocated in the GPU stack mem-
ory to store the intermediate results of the solvers.

Each grid box is calculated on a separate GPU core to
achieve massive parallelization using three CUDA kernels
constructed from predefined prototypes [37], [38]:

1) The first kernel calculates of the reaction rate coeffi-
cients using the variable values are stored in a global
array inside the GPU .

2) The second, most computationally demanding ker-
nel, includes all linear algebra operations of the
ODE solvers. The parser injects the required vari-
ation of the Rosenbrock solver method from a set of
integrator CUDA prototypes.

3) The third kernel performs statistical reduction, and
demands limited computational time compared
with other kernels.

The produced CUDA code supports all variations of
Rosenbrock solvers included in the original KPP code, and
transfers the array containing the cells and the input data
required by the kernels.

Finally, the parser modifies the produced KPP file that
contains the FORTRAN code responsible for the chemical
kinetics calculations in EMAC, by adding a function for
issuing the parallel GPU kernels and copying the data to and
fro the GPU memory. The parser also makes the appropriate
changes in the makefile to link the CUDA objects in the
EMAC binary code.

The biggest challenge of accelerating the source code was
the slowdown of the application due to large amounts of

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2918798, IEEE

Transactions on Parallel and Distributed Systems

memory bandwidth required. Each accelerated CPU process
requires a chunk of the GPU VRAM memory, whose size is
dependent on the number of species and reaction constants
in the MECCA chemical mechanism. For instance, a set
of 155 species and 310 reactions require the allocation of
~50KB for intermediate results. On the GPU this is assigned
to the global memory because the on-core memory is not
enough. Overall, the effort associated with optimising the
performance of the GPU kernel was an order of magnitude
greater than porting the code to CUDA.

4.3 Optimizations

The complexity of the solver and the memory requirements
per GPU thread are the main factors limiting performance.
To improve the performance of the application, we grad-
ually integrated GPU optimizations, while evaluating the
results with performance counters. The initial code transfor-
mation to CUDA revealed significant shortcomings in the
execution efficiency of the code. For example, the stall data
requests were found to be responsible for 63% of total stall
reasons.

To simplify the optimization improvement analysis, we
organize the transformations into three groups: i) Occu-
pancy improvement, ii) Memory improvements, and iii)
Source code simplification. As elaborated in section 5, the
impact of each optimization depends on the underlying
architecture of the GPU accelerator.

Occupancy improvement: The first improvement is to
ameliorate the occupancy of the GPU, the number of concur-
rent threads per Streaming Multiprocessor (SM). The pro-
grammer can either specify the number of registers at com-
pile time, using the proper flag (-maxrregcount=xxx), or
specify the launch bounds of the kernels inside the source
code (__launch_bounds__). In any case, the performance
gain from limiting the number of registers depends on the
GPU architecture. Limiting the register usage has no or very
limited impact in the Kepler architecture (K80). On the other
hand, limiting of the registers in the Pascal architecture had
a negative impact on the performance. Thus, the prepro-
cessor asks the user to select the architecture during the
compilation time, and based on the selection, it enables or
disables the -maxrregcount=128 compiler flag.

Memory optimizations: To solve the ODEs and calculate
species concentrations, more memory is required in total
than the on-chip memory available. To achieve the best exe-
cution efficiency on the GPU, we use a number of memory
optimizations in the generated code: i) better utilization of
the Level-1 (L1) on-chip memory; ii) privatization of data
structures; and iii) prefetching. Due to high register usage,
the kernel will use stack memory (local memory) for register
spilling. In our tests, the NVCC compiler reports 37520
bytes spill loads for the 3-step Rosenbrock solver. In the
Kepler architecture, each Streaming Multiprocessor (SMX)
has 64KB of on-chip memory that can be configured as
48KB of Shared memory with 16 KB of L1 cache, or vice
versa. The size of required temporary matrices is always
larger than the available shared memory, necessitating the
use of global and local memory.

To increase the utilization of local memory, we increased
the portion of the L1 cache against the shared memory

5

to 48KB per SMX, through the cudaFuncCachePreferLl
runtime call. This resulted in a 5-10% decrease in the number
of local memory transactions directed to the global memory,
depending on the solver used. In the Pascal architecture,
the local L1 memory is decoupled from the shared memory.
Thus, the aforementioned runtime call does not impact
the performance of the kernel execution. Additionally, we
privatized the majority of the matrices by either replacing
them with scalar variables or by using stack-allocated ar-
rays, allowing simplified temporary array indexing code.
Finally, the kernels employ prefetching of data to reduce
the latency. Prefetching may have unpredictable behavior,
especially in massively parallel architectures, such as GPUs.
The preprocessor enables or disables prefetching based on
the selected architecture.

Control code simplification: The GPU cores achieve the
best performance when they execute simple instructions
with the absence of control code. To increase the instruction-
level parallelism, the source code uses three commonly
used techniques: i) pre-calculated lookup tables; ii) loop
unrolling; and iii) branch elimination. Lookup tables are
used for selecting the solver and setting the proper values
in specific variables for the available solvers. The benefits of
loop unrolling are most profound in the preparation of the
solvers due to the sparsity of the Jacobian matrices. Limited
branch elimination by fusing loops or merging branches also
improves execution time.

4.4 GPU Workload Management

The biggest challenge when using accelerators in hybrid
HPC architectures is the imbalance created by the uneven
workload of tasks. While the application uses GPUs as ac-
celerators, some CPU cores are responsible only for commu-
nication and handling of GPUs, while the remaining cores
are idling. Allocating more processes on the unused CPU
cores, creates a greater imbalance between the accelerated
processes and the CPU-only processes. The are two ways to
do this: i) over-subscription by allowing more than two CPU
cores (MPI processes) from a single node to offload to the
accelerator, or ii) using the Multi-Process Service (MPS) [39].
Over-subscription can produce some performance gains, but
it is not beneficial overall as processes that can under-utilize
the available hardware. The number of GPUs per node and
VRAM memory available in each GPU dictates the total
number of CPU cores that can run simultaneously. The
alternative approach of using the MPS allows concurrent
execution of kernels, and memory transfers from different
processes on each node. The latter requires the use of a
GPU accelerator with computation capability 3.5 or higher.
The MPS acts as a proxy for the different processes of the
accelerated application to enable transparent sharing of the
available accelerator(s) in order to minimize the idle time.

5 EXPERIMENTAL EVALUATION

The following experimental evaluation assesses: (i) the ef-
fectiveness of the code optimizations; (i) the impact of
accelerator use on the performance of the application; and
(iii) bottlenecks and limitations. Two different hardware and
software environments are used to measure the impact of
the code acceleration (Table 2):

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2918798, IEEE

Transactions on Parallel and Distributed Systems

e An IBM® S822LC compute node equipped with
two 10-core 2.92 GHz POWERS processors [40], [41]
with turbo up to 4 Ghz. Simultaneous multithreading
is set to 4 for optimum performance in HPC ap-
plications. The computation node is equipped with
a P100 GPU accelerator (Pascal Architecture). The
application is compiled using the IBM compiler, x1£
ver. 15.1.5.

e Compute nodes of the Jureca machine at the Jiilich
Supercomputing Centre. Each compute node is
equipped with two 12-core Xeon®E5-2680 v3 CPUs
with 128 GBytes of RAM. The GPU nodes contain
two NVIDIA®KS0 GPUs (Kepler Architecture). The
application is compiled using the Intel compiler
(ifort ver. 17.0.2) for improved native performance.

To evaluate the model, we use a representative simula-
tion with a horizontal resolution of 128 grid points in the
longitudinal direction and 64 grid points in the latitudi-
nal direction, with 90 vertical levels totaling 737280 Grid
points. Table 3 details the experimental setup for the results
shown in this section. The default ESM2 KPP chemistry
batch option is used, along with model namelist setup
NML_SETUP=ES5M2/02b_gctm, without dynamics nudging
and with all diagnostic submodels switched off.

On the Intel platform, the additional
flag —-—ntasks-per—-node=24 is used, and
——cpus-per—-task=2 is used on the Jureca GPU node
to ensure that a physical CPU core is assigned to each
process. The execution of mpirun on the PowerPC
machine specifies ——map-by L2cache —-bind-to
core:overload-allowed to reduce the contention of the
cache and function units.

5.1 Impact of Optimizations

The biggest programming effort was related to the devel-
opment of the application and incremental performance
improvements, achieved with the integration of various
optimizations. The results for this section are based on the
extracted chemical kinetics kernel, used as a microbench-
mark to demonstrate the effectiveness of the code transfor-
mations. The microbenchmark uses as input the chemical
species concentrations extracted from the execution of one
time-step of the application. The microbenchmark is per-
formed with five variations of the Rosenbrock numerical
solver on the three different GPU accelerator types. Table 4
presents the mean speedup for each optimization set.

Occupancy optimization by either wusing the
-maxrregcount=xxx flag, or specifying the launch
bounds of the kernels inside the source code
(__launch_bounds__) gives mixed results. In particular,
the K80 accelerator performs worse, and the P100 shows no
measurable difference. The number of registers or launch
bounds depends on the source code characteristics and
is selected empirically. In our implementation the flag is
set to 128 registers for CUDA 2.0 architecture and the
source-to-source parser inserts the flags in the appropriate
generated files.

Changing the cache configuration to wuse more
Level-1 (L1) cache instead of shared memory
(cudaFuncCachePreferLl), shows little performance

6

improvement on the K80. P100 contains separate L1 and
shared memory, nullifying any effort to better allocate the
on-chip memory. Privatization of the data significantly
improves performance on all platforms. The impact is
greater on older GPU architectures that have simpler
on-chip memory organization. The most notable negative
impact (-18%) in the performance occurs with the usage
of the prefetch intrinsics inside the source code for the
P100 accelerator. Newer accelerators contain advanced
hardware prefetchers that decrease the impact of manual
memory optimization. Thus, we are forced to disable the
software prefetcher specifically for the P100 platform. On
the other hand, the privatization of global arrays using
shared memory, registers, and stack allocated arrays gives
the biggest benefit by reducing off-chip memory traffic.

5.2 Speedup and Scalability Analysis

To gauge the acceleration performance, we compare the
measured GPU speedup with the maximum theoretical
speedup S, given by Amdahl’s law [43]:
1
S = =7

where f is the is the proportion of execution time that
the part benefiting from GPU acceleration originally occu-
pied, ranging from 73% for a single process to 29% for
192 CPU processes. Table 5 presents the execution time of
the EMAC application and the maximum theoretical and
GPU-measured performance speedup achieved for different
configurations. The measured mean ratio of GPU-achieved
to maximum theoretical S performance ranges between 79—
84%, showing stable scaling performance of the accelerated
component.

Increasing the number of cells per processes or the
complexity of the solver increases the computation time and
the potential speedup, as shown in Table 6. However, the
application absolute speedup is still limited due to the fine-
grained communication even if we increase the workload
per GPU by a factor four. We emphasize that simulations
with high resolution require not only greater computational
power but also memory. Thus, the poor scalability of the
application and the memory requirements both limit the
resolution of the climate simulations.

Figure 3 presents the achieved speedup of the applica-
tion compared with the serial implementation, without MPI
support and without accelerators. Enabling the communica-
tion subroutines and using two processor cores gives only
a 1.06x speedup, revealing the complexity of the communi-
cation mechanisms and the imbalance created between the
two processes. Moreover, the accelerated version achieves
better scalability, as it uses two accelerators in each com-
pute node. Acceleration allows the application to reach the
efficiency limit faster than the CPU version. For example,
the performance with two CPU-only nodes is similar to
the accelerated version running in one node. In addition,
the computation partitioning of the application does not
allow runs with larger than 192 processes. Thus, acceleration
allows the application to reach the scalability limit faster
than the CPU-only version.

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2918798, IEEE
Transactions on Parallel and Distributed Systems

7
Node CPU Cores | RAM Accelerators Peak Performance
GB NVIDIA GPU Cores VRAM Bandwidth GFlops (DP)
Jureca GPU Node | E5-2680 v3 24 128 2x K80 2x4992 | 4x12GB | 2 x 240 GB/s 4208: 480 CPU + 2x 1864 GPU
IBM®) S822LC POWERS 20 256 4x P100 4%x3584 | 4x16GB 720 GB/s 21667: 467 CPU + 4x5300 GPU
TABLE 2

Hardware configurations used for performance evaluation.

Number of columns

lat x lon = 64 x 128 = 8192

009 — — — —
Vertical atm. levels 90 levels (LOOMA) — 1 [|
Total grid points 737280 grid points
Chemical mechanism 155 species, 310 chemical reactions
Spectral truncation T42 804 —
ODE Solver 3-stage, L-stable pair of order 3(2) [42]
TABLE 3 | 1 Chemical
Experimental configuration for model evaluation simulations. C—CUDA
° 60 - == MPI
=] m Linux Kernel
= mm Memory Ops
192 4 R g ANY W 3 Convection
404 =3 Advection
o6 Scavenging
i NN =3 Other
48 1 20 § § g
o 24
=
3
2 12 A 0 o L o
=~ S > o & o Ko o Lo
7 CF & & & O T O
6 | N "OQ’ q:zk \qu rpb‘ \éo b“b eo vaeo ’gq,%eo
—— CPU Only v
4 —+— GPU Accelerated .) o
. Fig. 4. Strong scaling execution time breakdown of the accelerated
2 —&— [deal (serial) EMAC application using chemical kinetics.
30004
s T T T o T o T o T o T
9 9 9 ¥ 9 O
e & §F & F CF F O O -
N 8 T @ O RS @S g [Chemical
25001 | | C—Jcupa
(@) i i —
5 I Linux Kernel
Fig. 3. Scalability test of the EMAC application. 2000 I Memory Ops
] Convection
= [Advection
- . £1500 : Scavengi
5.3 Time allocation E : N\ Scavenging
= [ZZ7] Other
Figure 4 presents the breakdown of the relative execution]
time for the accelerated version of the application. The 1000+ .
modules of Convection, Advection, and Scavenging are
responsible for different phases of the application and have 5001
b I
not been accelerated. NN
Communication burdens the performance on a large N = i
number c.)f MPI processes. This hap'pen.s due to the exchange AN e@&* &, NS
communication pattern of the application from the ECHAM S S NG JF & £ £
model framework. The MPI portion of the execution time in- & &

creases from 54 seconds in eight nodes to 108 seconds when
running with 16 nodes as Figure 5 shows. The experiment
uses a fixed total problem size (strong scaling) that does not
allow to scale to more than 192 MPI processes.

Moreover, the kernel overhead increases from 48 seconds
in one node to 92 seconds in eight nodes. We tracked

Fig. 5. Execution time of the accelerated EMAC application using chem-
ical kinetics compared with the single-node CPU-only version.

of cells per process when running with 192 processes, in-

down the Linux kernel overhead to the network driver and
its locking mechanisms, which is an indication of ineffi-
cient fine-grained communication due to the large number
of small messages. The portion of wall-time dedicated to
chemical kinetics is decreasing faster than in the CPU only
version. For example, the application assigns 3840 number

creasing the overhead of processing the model.

5.4 Summary

The evaluation indicates that platform agnostic GPU kernel
optimization is very challenging. Our implementation uses
compile-time flags to select the best options and code paths

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2918798, IEEE

Transactions on Parallel and Distributed Systems

Accelerator Occupancy Prefer L1 Privatization SW Prefetch Simplification Total Speedup
Mean Speedup K80 -79% £ 039 +1.25% + 021 +15.12% £2.77 +3.15% £ 1.81 +0.21% £0.19 +17.12% £+ 3.78
Mean Speedup P100 +0.06% + 1.09 -0.04% 4 2.81 +22.48% +3.87 -18.14% £2.03 +9.62% +3.30 +40.57% =+ 3.04

TABLE 4
Mean speedup of the kernel solvers using K80, and P100 CUDA enabled accelerators using synthetic input. Software Prefetch optimization is
disabled when calculating the total speedup on the P100 platform.

CPU Execution Accelerated Accelerated = Measured = Max. Theoretical Achieved
Processes Total Time (s) Total Time (s) Proportion f Speedup Speedup S Performance
12 2829 1485 57.2% 1.90% 2.33x 81.5%
24 1625 932 50.1% 1.74x 2.00x 87.0%
48 874 593 46.4% 1.47 % 1.86x 79.0%
96 537 395 41.5% 1.35x 1.71x 78.9%
192 344 287 29.2% 1.19x 1.41x 84.4%
TABLE 5

Execution time, excluding initialization, of the EMAC application for 24 hours simulation time, measured and maximum theoretical speed-up, and
achieved (measured over theoretical speedup) performance fraction.

Grid Resolution CPU (s) Accel (s) Cells/Proc. Speedup

8192 Columns 344 287 3840 1.19x

32768 Columns 1238 1007 46080 1.23x
TABLE 6

Execution time of the EMAC application for 24 hours simulation time
using two different grid resolutions.

for optimal performance. The performance gain can reach
up to +40% using the latest Pascal architecture. Platform-
specific optimizations can ultimately determine whether
the application will obtain any benefit from acceleration.
Our scalability tests show that our implementation achieves
performance ranges between 79-84% of the expected per-
formance gain by accelerating the application, leaving some
room for improvement. GPU acceleration allows to reach the
scalability limits more efficiently than the CPU-only version,
due to reduced communication.

6 EXPERIENCES

This section presents an overview of our collected experi-
ences and gives suggestions to guide future efforts to port
complex applications, such as climate models. The porting
to GPUs and optimizing the chemical kinetics mechanisms
for Atmosphere-Chemistry modelling was particularly chal-
lenging, requiring a generic solution and not a specific
platform or accelerator.

6.1 Optimizations

Currently, there are many available GPU architectures, and
code optimizations applicable on current architectures do
not guarantee efficient execution in future architectures.
Table 7 presents a list of the available CUDA-enabled archi-
tectures. The memory hierarchy and the cache size evolve
with each architecture iteration. On the Kepler architecture
a maximum of only 48 KB L1 cache can be used. The Pascal
architecture in practice transforms the L1 cache to 24 KB
of Read-Only memory and adds 64 KB of dedicated shared
memory. The introduction of read-only cache in Kepler ar-
chitecture can improve the performance in certain scenarios.

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Fine-tuning for a specific GPU architecture does not
guarantee future-proof performance. Prefetching has lim-
ited impact on the Kepler architecture. The performance
on Pascal architectures is actually made worse, due to the
interference of the software prefetching mechanism with
the hardware prefetchers, as presented earlier in Table 4.
Moreover, there are features that are not available on all
architectures. The most notable example is the uncached
load that can have significant impact on performance in
the latest architectures. Thus, the developers have to be
careful to create platform agnostic optimizations that run
in all architectures or develop specialized code for each
GPU architecture. Even if the use of future architectures will
likely not require significant changes in the source code, the
downside of the generic approach is that the application will
not achieve the maximum possible performance.

Our experience shows that the memory access and sim-
plification optimizations have the greatest impact, but the
developer should also explore novel ideas for improving
performance. For example, in contrast with the common
approach that all accesses must be in parallel in global
memory, the performance of the application improved by
moving the temporary arrays locally, using registers and
stack memory. In this case, the high usage of internal cache
memories due to register spilling, in combination with
sparse matrices significantly reduce the performance of the
traditional approach of parallel accesses.

The alternative approach is to create a specialized ver-
sion of the GPU kernel for each architecture. The CUDA
programming model allows, with the help of the prepro-
cessor, to selectively enable or disable parts of the code.
Thus, multiple versions of the same accelerated code are
necessary in order to achieve the best possible performance.
In our implementation, the source-to-source parser asks for
the targeted architecture and makes the appropriate changes
in the output source code. An additional generic version of
the produced code is also provided, including only the parts
that are platform-agnostic and provide performance benefits
on all GPU accelerators.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2918798, IEEE

Transactions on Parallel and Distributed Systems

Name M2070 K80 P100 V100
Architecture Fermi Kepler Pascal Volta
Chip GF100 2x GK210 GP100 GV100
Cores 448 4992 3584 5120
Shared Mem / 64 KB 64 KB - 128 KB
L1
De/ted Shared - - 64KB -
Mem
L1 / Rd-only - - 24 KB -
Cache
Rd-only cache - 48 KB - -
L2 Cache Size 768 KB 1536 KB 4096 KB 6144 KB
DP GFlops 515 1864 4036 7500
VRAM (GB) 6 2x12 16 16
Bandwidth 144 2x240 720 900
(GB/s)

TABLE 7

Available GPU architectures.

6.2 Compilation

The compiler framework of each architecture can play a sig-
nificant role on the required programming effort and in the
implementation of an accelerated application. Additional
information regarding the usage and relationship between
variables and arrays, can significantly improve the perfor-
mance of the kernel. For instance, the compiler can create
instructions of uncached memory accesses loads when the
restrict and const keywords are used. The compiler
uses these keywords in two ways. Firstly, to understand
that the pointers cannot point to memory that overlaps and
apply optimizations. Secondly, with the introduction of the
CUDA 3.5 architecture, the compiler can automatically gen-
erate the LDX instructions that allow using the texture cache
for read-only data. However, the compiler can not guarantee
the creation of these instructions if there is missing compile-
time information. Thus, it is advisable that the developer
examines the output of the compiler when planning to use
architecture specific characteristics or extensions.

The second challenge we encountered during develop-
ment was the compiler memory allocation. The CUDA com-
piler framework is very demanding in CPU and memory
resources, for both static and dynamic compilations. Large
applications can result in long compilation times and large
memory consumption. For example, in our scenarios with
2200 chemical reactions, the portion to be offloaded is in the
order of 80K lines of code. The big compilation file resulted
in more than 40 GB of memory required during compilation,
and a lengthy compilation time. Furthermore, we were
unable to create a version with ‘debug’ symbols, because
the memory requirements were greater than 220 GB during
compilation. It is thus important to take into account the
compilation requirements in complex scientific applications
with a large amount of offloaded code, as they may be a
limiting factor. Finally, when running multiple processes
per node, the very large amount of memory allocated by
the just-in-time compilation can cause excessive memory
swapping or even application crashes. The solution is to
include the production of architecture-targeted byte code
during compilation at the expense of additional compilation
time.

6.3 Multi-Process Service

The multiprocess service is necessary for running in HPC
machines where multiple CPU cores are available per GPU
accelerator. It is supported on accelerators with virtual
architecture 3.0 or newer. The developer must take into
account the additional latency created when the application
uses the MPS in multiple processes attached to a single
accelerator. For example, the execution latency of kernels
using the P100 GPU configuration increased from the order
of 130ms to 150-300 ms. The transfers to and from the host
are responsible for the greatest decrease in performance. The
timing increase is usually one or two orders of magnitude
for small transfer sizes. On the Power 8 platform, the data
transfer time of the application was 4x, mostly due to
higher communication latency when processes were trying
to use an accelerator simultaneously.

6.4 Load Imbalance

The simulation of chemical reactions amplifies the com-
putational imbalance created by natural phenomena, such
as sunset and sunrise, in the climate simulation models.
The introduction of heterogeneity in HPC machines com-
plicates scheduling and introduces an additional source of
imbalance. Dynamically sharing of GPU accelerators using
the Multi-Process Process reduces the latter imbalance and
increases the overall utilization between the accelerated
processes of the application. The scheduling efficiency in
climate models can be further improved. For example, the
changing solar radiation during the diurnal cycle can double
the execution time of the kinetics numerical solver due to the
stiffness of the differential equations. By calculating the solar
irradiance a priori based on the time and spatial coordinates,
the developer can opt for higher execution priority and/or
allocation of additional resources. However, the discretiza-
tion of past and present production climate model codes and
the CUDA programming model limit the potential for using
more advanced scheduling techniques. Future investigation
and the advent of a new generation of Earth system models
is necessary to address the Earth system multi-process and
multi-scale simulation imbalance and to fully exploit the
heterogeneity of modern HPC architectures.

6.5 Verification of the Results

The verification of climate model output is a complex re-
search topic. Unit testing with proper code coverage and
simulation tests over long periods of the order of years is
necessary to ensure stability and correctness.

To test the numerical accuracy, we compare the rela-
tive difference between the CPU-only and GPU-accelerated
codes after single time steps with identical initial con-
ditions. The results show a median difference less than
0.000000001%, well within the 0.1% accuracy criterion for
the chemical kinetics calculation [8].

The GPU-accelerated model remains stable when run-
ning over a 2-year simulation period and accurately re-
produces the expected zonal and surface distributions of
key species (Ozone, Hydroxyl radical, Ammonia, and Sul-
phur Dioxide) [36]. The median value of the CPU-GPU
difference in aggregated mass of chemical species is less

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2918798, IEEE

Transactions on Parallel and Distributed Systems

9.30E-16

8.24E-06 1.65E-05 2.47E-05 3.30E-05 4.12E-05

Fig. 6. Visualization of atomic oxygen concentration (mol/mol) during
silent data corruption. Notice unphysical boxes on the left side of the
domain.

than 5%. Inclusion of wet scavenging, to test the effect of
boundary conditions, was shown to amplify the range of
extreme values, with median values still falling within the
5% limit. This is within the margin observed by the climate
modelling community stemming from differences between
architectures and compilers (not specific to GPU).

Developers should be aware of possible silent data cor-
ruption. The memory allocation for chemical kinetics on the
GPU varies depending on the stiffness of the solver. In the
case of very stiff systems GPU contexts can crash due to
excessive memory demands, returning from the execution
of the solver without updating the chemical concentrations.
Figure 6 shows an example of silent data corruption in
a simulation. It is highly recommended that developers
make diligent use of error-checking APIs, such as the one
provided by the CUDA programming model, to ensure
proper execution of GPU-offloaded code.

6.6 Acceptance from Users and Developers

The integration of GPU accelerators in modern HPC ar-
chitectures drives a transformation of the software used
by computational scientists. Our design and development
choices aim towards minimal changes in legacy coding
habits, and strive to not expose the model developers to the
complexity and heterogeneity of new systems. However, we
foresee that to effectively adopt novel technologies, either
advanced external user support or embedding of specialised
computational scientists in traditional scientific code devel-
opment communities will be a necessity.

In the case of GPU chemical kinetics, during the devel-
opment phase the response of the EMAC model commu-
nity developers and users was mostly positive. The key
requirements set before acceptance were twofold: to not
introduce modifications in the development process and
build procedure of the EMAC application, and to avoid
additional external software dependencies. The parser is
released and included in the EMAC distribution, thus no
external dependencies are necessary. The decision to create
an additional parser tool and decouple the GPU code from
the main source code allowed the developers to indepen-
dently proceed with development and licensing, and did
not require additional external library requirements, other
than the CUDA environment, which is in any case readily

10

available in HPC centers with NVidia accelerators. It also
does not in any way hinder the portability of the code in the
HPC centres where the application is currently deployed.
The only present obstacle for users to finally adopt and use
the accelerated version is the additional step required before
compiling the code during configuration.

The parser supports the batch chemical mechanisms
that are bundled in the EMAC distribution out-of-the-box,
covering the majority of use cases. Corner cases that fail are
custom user-defined mechanisms of large size and complex-
ity that include additional operations in the derivation of
reaction rates. These cases are rare and involve users with
advanced specilisation on atmopsheric chemistry. There is
great interest from these users to benefit from this work as
they have great computational demands for chemical kinet-
ics and there is ongoing effort to jointly develop support.

7 CONCLUSIONS

This paper presents a method for accelerating atmospheric
chemical kinetics calculations in climate models using GPU
accelerators, and shares the experiences of the developers
as well as insights from the process. The implementation
can be used on three generations of accelerators (M2070,
K80, and P100), by applying uniform code optimizations
independently of the underlying architecture. The acceler-
ated kernel achieves up to a factor of 22 speed-up over the
same portion of the code running on CPU in real-world tests
on HPC clusters. Accelerator optimizations achieve between
+17% up to +40% performance gain over the basic porting
of the code to GPU and the accelerated application achieves
between 1.19x up to a 1.90x speed-up, allowing faster
completion of the simulations. Finally, the paper presents an
overview of our experiences regarding code optimization,
compilation, use of the multi-process service, task imbal-
ance, and verification of the results.

This paper presents a significant contribution to improv-
ing the performance of climate applications that rely on
chemical kinetics simulations through GPU acceleration on
heterogeneous architectures. To the best of our knowledge,
it is the first time that such a significant performance im-
provement has been achieved using GPU accelerators in a
real-world global climate modelling application. Beyond the
GPU acceleration of chemical kinetics calculations, there is
still room for further optimizations in Earth system mod-
elling. It is expected that advanced dynamic scheduling of
the tasks can reduce the load imbalance and increase the
potential performance benefit.

8 CODE AVAILABILITY

The FORTRAN to CUDA code-to-code parser is developed
using the C and Python programming languages and it is
released and distributed with the EMAC model code. In
addition, the source code is available in a public repository
under an open license to allow contributions from the
developer community [37], [38]. The code parses the auto-
generated MECCA KPP solver code to produce a CUDA
file that is compiled and linked with the EMAC/MECCA
FORTRAN code.

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2918798, IEEE

9

Transactions on Parallel and Distributed Systems

ACKNOWLEDGEMENTS

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under Grant Agreement No
287530 and from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreements

No
the

675121 and No 676629. This work was supported by
Cy-Tera Project, which is co-funded by the European

Regional Development Fund and the Republic of Cyprus
through the Research Promotion Foundation. Additional
computational time was granted on the JURECA supercom-
puter at the Jiilich Supercomputing Centre.

Any opinions, findings and conclusions or recommenda-

tions expressed in this paper are those of the authors and do
not necessarily reflect the views of the funding agencies.

REFERENCES

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]

[10]

[11]

(12]

(13]

[14]

[15]

[16]

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

M. Christou, T. Christoudias, J. Morillo, D. Alvarez, and H. Merx,
“Earth system modelling on system-level heterogeneous archi-
tectures: EMAC (version 2.42) on the Dynamical Exascale Entry
Platform (DEEP),” Geoscientific Model Development, vol. 9, no. 9, p.
3483, 2016.

L. Dagum and R. Menon, “OpenMP: An industry standard API for
shared-memory programming,” in IEEE International Conference on
Computational Science and Engineering, 1998.

Nvidia, “Gpu accelerated applications,
http:/ /www.nvidia.com/object/gpu-applications.htm,” 2017.
——, “Programming guide,” 2015.

A. Munshi, “The OpenCL specification,” in 2009 IEEE Hot Chips
21 Symposium (HCS). IEEE, 2009, pp. 1-314.

P. Jockel, A. Kerkweg, A. Pozzer, R. Sander, H. Tost, H. Riede,
A. Baumgaertner, S. Gromov, and B. Kern, “Development cycle
2 of the modular earth submodel system (messy2),” Geoscientific
Model Development, vol. 3, no. 2, pp. 717-752, 2010.

V. Damian, A. Sandu, M. Damian, F. Potra, and G. R. Carmichael,
“The kinetic preprocessor KPP-a software environment for solving
chemical kinetics,” Computers & Chemical Engineering, vol. 26,
no. 11, pp. 1567-1579, 2002.

H. Zhang,]. C. Linford, A. Sandu, and R. Sander, “Chemical
Mechanism Solvers in Air Quality Models,” Atmosphere, vol. 2,
no. 3, pp. 510-532, 2011.

M. Z. Jacobson and R. P. Turco, “SMVGEAR: A sparse-matrix,
vectorized Gear code for atmospheric models,” Atmospheric En-
vironment, vol. 28, no. 2, pp. 273-284, 1994.

J. C. Linford, J. Michalakes, M. Vachharajani, and A. Sandu,
“Multi-core acceleration of chemical kinetics for simulation and
prediction,” in High Performance Computing Networking, Storage and
Analysis, Proceedings of the Conference on. IEEE, 2009, pp. 1-11.

J. C. Linford, “Accelerating atmospheric modeling through emerg-
ing multi-core technologies,” Ph.D. dissertation, Virginia Tech,
2010.

T. Christoudias and M. Alvanos, “Accelerated chemical kinetics in
the EMAC chemistry-climate model,” in High Performance Comput-
ing & Simulation (HPCS), 2016 International Conference on. IEEE,
July 2016, pp. 886-889.

V. Damian, A. Sandu, M. Damian, F. Potra, and G. R. Carmichael,
“The kinetic preprocessor KPP-a software environment for solving
chemical kinetics,” Computers & Chemical Engineering, vol. 26,
no. 11, pp. 1567-1579, 2002.

M. Satoh, T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S.-
i. Iga, “Nonhydrostatic icosahedral atmospheric model (nicam)
for global cloud resolving simulations,” Journal of Computational
Physics, vol. 227, no. 7, pp. 3486-3514, 2008.

T. Shimokawabe, T. Aoki, C. Muroi, J. Ishida, K. Kawano, T. Endo,
A. Nukada, N. Maruyama, and S. Matsuoka, “An 80-fold speedup,
15.0 tflops full gpu acceleration of non-hydrostatic weather model
asuca production code,” in Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis. 1EEE Computer Society, 2010, pp. 1-11.

I. Demeshko, N. Maruyama, H. Tomita, and S. Matsuoka, “Multi-
gpu implementation of the nicam atmospheric model,” in Euro-
pean Conference on Parallel Processing. Springer, 2012, pp. 175-184.

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

(34]

[35]

[36]

[37]

11

J. Michalakes and M. Vachharajani, “Gpu acceleration of numeri-
cal weather prediction,” Parallel Processing Letters, vol. 18, no. 04,
pp. 531-548, 2008.

J. Mielikainen, B. Huang, H.-L. A. Huang, and M. D. Goldberg,
“Gpu acceleration of the updated goddard shortwave radiation
scheme in the weather research and forecasting (wrf) model,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 5, no. 2, pp. 555-562, 2012.

M. A. Taylor, “The ACME project’s dycore performance strategy
for next generation architectures.” Sandia National Laboratories
(SNL-NM), Albuquerque, NM (United States), Tech. Rep., 2015.
M. R. Norman, A. Mametjanov, and M. Taylor, “Exascale pro-
gramming approaches for the accelerated model for climate and
energy,” 2017.

W. Putnam, “Graphics processing unit (GPU) acceleration of the
Goddard Earth observing system atmospheric model,” 2011.

Z. Wang, X. Xu, N. Xiong, L. T. Yang, and W. Zhao, “Gpu
acceleration for grapes meteorological model,” in High Performance
Computing and Communications (HPCC), 2011 IEEE 13th Interna-
tional Conference on. 1EEE, 2011, pp. 365-372.

M. W. Govett, J. Middlecoff, and T. Henderson, “Running the NIM
next-generation weather model on GPUs,” in Proceedings of the
2010 10th IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing. IEEE Computer Society, 2010, pp. 792-796.

M. Govett, J. Middlecoff, and T. Henderson, “Directive-based par-
allelization of the NIM weather model for GPUs,” in Proceedings
of the First Workshop on Accelerator Programming using Directives.
IEEE Press, 2014, pp. 55-61.

O. Fuhrer, C. Osuna, X. Lapillonne, T. Gysi, M. Bianco, and
T. Schulthess, “Towards GPU-accelerated Operational Weather
Forecasting,” in The GPU Technology Conference, 2013.

O. Fuhrer, C. Osuna, X. Lapillonne, T. Gysi, B. Cumming,
M. Bianco, A. Arteaga, and T. C. Schulthess, “Towards a per-
formance portable, architecture agnostic implementation strategy
for weather and climate models,” Supercomputing frontiers and
innovations, vol. 1, no. 1, pp. 45-62, 2014.

T. Gysi, C. Osuna, O. Fuhrer, M. Bianco, and T. C. Schulthess,
“Stella: A domain-specific tool for structured grid methods in
weather and climate models,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC '15. New York, NY, USA: ACM, 2015, pp. 41:1-
41:12.

Y. Zhang and F. Mueller, “Autogeneration and autotuning of 3d
stencil codes on homogeneous and heterogeneous gpu clusters,”
IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 3,
pp. 417427, 2013.

J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel program-
ming standard for heterogeneous computing systems,” Computing
in science & engineering, vol. 12, no. 3, pp. 66-73, 2010.

D. Quinlan, C. Liao, J. Too, R. P. Matzke, and M. Schordan, “ROSE
compiler infrastructure,” 2012.

T. Gysi, J. Baer, and T. Hoefler, “dCUDA: Hardware Supported
Overlap of Computation and Communication,” in Proceedings of
the International Conference for High Performance Computing, Net-
working, Storage and Analysis (5C16). IEEE Press, Nov. 2016, pp.
52:1-52:12.

M. Christen, O. Schenk, and H. Burkhart, “Patus: A code genera-
tion and autotuning framework for parallel iterative stencil com-
putations on modern microarchitectures,” in Parallel & Distributed
Processing Symposium (IPDPS), 2011 IEEE International. 1EEE, 2011,
pp. 676-687.

S. Wienke, P. Springer, C. Terboven, and D. an Mey, “Openaccfirst
experiences with real-world applications,” Euro-Par 2012 Parallel
Processing, pp. 859-870, 2012.

M. Norman, J. Larkin, A. Vose, and K. Evans, “A case study of
cuda fortran and openacc for an atmospheric climate kernel,”
Journal of computational science, vol. 9, pp. 1-6, 2015.

O. W. Group et al.,, “The OpenACC Application Programming
Interface,” 2015.

M. Alvanos and T. Christoudias, “GPU-accelerated atmospheric
chemical kinetics in the ECHAM/MESSy (EMAC) Earth
system model (version 2.52),” Geoscientific Model Development,
vol. 10, no. 10, pp. 3679-3693, 2017. [Online]. Available:
https:/ /www.geosci-model-dev.net/10/3679/2017/

, “MEDINA: MECCA Development in Accelerators—-KPP For-
tran to CUDA source-to-source Pre-processor,” Journal of Open
Research Software, vol. 5, no. 1, 2017.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2019.2918798, IEEE
Transactions on Parallel and Distributed Systems

12

[38] The Cyprus Intitute, “MECCA - KPP Fortran to CUDA source-to-
source pre-processor, https://github.com/CyIClimate/medina,”
2016.

[39] Nvidia, “Multi-process service,” 2015.

[40] E.]. Fluhr, J. Friedrich, D. Dreps, V. Zyuban, G. Still, C. Gonzalez,
A. Hall, D. Hogenmiller, F. Malgioglio, R. Nett et al., “5.1 POWERS8
TM: A 12-core server-class processor in 22nm SOI with 7.6 Tb/s
off-chip bandwidth,” in Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2014 IEEE International. 1EEE, Feb 2014,
pp. 96-97.

[41] J. Stuecheli, “Power8,” in Hot Chips, vol. 25, 2013, p. 2013.

[42] A. Sandu,]. Verwer,]J. Blom, E. Spee, G. Carmichael, and F. Po-
tra, “Benchmarking stiff ode solvers for atmospheric chemistry
problems ii: Rosenbrock solvers,” Atmospheric environment, vol. 31,
no. 20, pp. 3459-3472, 1997.

[43] G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” in Proceedings of the
April 18-20, 1967, spring joint computer conference. ACM, 1967, pp.
483-485.

Michail Alvanos Dr Michail Alvanos is Compu-
tational Scientist at the Cyprus Institute. He is
working on accelerating climate modelling ap-
plications at the Institute’s Computation-based
Science and Technology Research Center (CaS-
ToRC). He received his Ph.D. from the De-
partment of Computer Architecture (DAC) of
the Technical University of Catalonia (UPC) in
Barcelona, Spain. He has a Master of Science
degree in the field of Parallel and Distributed
Systems in the Computer Science Department
at the University of Crete. His research interests include High Perfor-
mance Computing Systems, GPU acceleration, Computer Architecture,
Compilation Techniques, Compiler Design, and Static Analysis.

Theodoros Christoudias Dr Theodoros Chris-
toudias is an Assistant Professor at the Cyprus
Institute. His research interests include global
climate modelling and tracer transport, regional
air quality modelling, computational model de-
velopment and optimization, and scientific data
visualization. He holds a PhD in Physics (2009)
and a BSc in Physics (2005), both from Impe-
rial College London, UK. He was previously a
Computational Scientist at the Cyprus Institute
and an International Fellow at the Fermi National
Accelerator Laboratory (Fermilab), USA.

1045-9219 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

