Dataset Open Access

Datasets from the KDD 2021 article "A Semi-Personalized System for User Cold Start Recommendation on Music Streaming Apps"

Léa Briand; Guillaume Salha-Galvan; Walid Bendada; Mathieu Morlon; Viet-Anh Tran


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Léa Briand</dc:creator>
  <dc:creator>Guillaume Salha-Galvan</dc:creator>
  <dc:creator>Walid Bendada</dc:creator>
  <dc:creator>Mathieu Morlon</dc:creator>
  <dc:creator>Viet-Anh Tran</dc:creator>
  <dc:date>2021-07-21</dc:date>
  <dc:description>We publicly release the anonymized song_embeddings.parquet  user_embeddings.parquet  user_features_test.parquet  user_features_train.parquet  user_features_validation.parquet datasets, with each of the TT-SVD or UT-ALS versions of embeddings, from the music streaming platform Deezer, as described in the article "A Semi-Personalized System for User Cold Start Recommendation on Music Streaming Apps" published in the proceedings of the 27TH ACM SIGKDD conference on knowledge discovery and data mining (KDD 2021). The paper is available here.

These datasets are used in the GitHub repository deezer/semi_perso_user_cold_start to reproduce experiments from the article.

Please cite our paper if you use our code or data in your work.</dc:description>
  <dc:identifier>https://zenodo.org/record/5121674</dc:identifier>
  <dc:identifier>10.5281/zenodo.5121674</dc:identifier>
  <dc:identifier>oai:zenodo.org:5121674</dc:identifier>
  <dc:relation>doi:10.5281/zenodo.5121673</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:subject>Deezer dataset</dc:subject>
  <dc:subject>user embedding</dc:subject>
  <dc:subject>song embedding</dc:subject>
  <dc:subject>Recommender Systems</dc:subject>
  <dc:subject>Music Streaming App</dc:subject>
  <dc:subject>Cold start</dc:subject>
  <dc:title>Datasets from the KDD 2021 article "A Semi-Personalized System for User Cold Start Recommendation on Music Streaming Apps"</dc:title>
  <dc:type>info:eu-repo/semantics/other</dc:type>
  <dc:type>dataset</dc:type>
</oai_dc:dc>
120
120
views
downloads
All versions This version
Views 120120
Downloads 120120
Data volume 49.0 GB49.0 GB
Unique views 105105
Unique downloads 2727

Share

Cite as