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Abstract—The availability of virtualization technologies and
cloud models has made possible an effective decoupling of
applications and services from the underlying infrastructure,
which eventually allows far more flexibility in deployment and
operation processes than in the past. However, this also means
that hardware acceleration will be available ever more seldom,
which may jeopardize the efficiency of computing-intensive tasks,
including network monitoring and packet inspection in cyber-
security appliances.

In ASTRID, we investigated the usage of the extended Berkeley
Packet Filter (eBPF) for effective and efficient packet inspection.
Our goal is the implementation of a tool that provides similar
information as existing cyber-security appliances but with a
reduced execution footprint, in order to be easily integrated
in cloud-native applications without any hardware or software
dependency on the underlying infrastructure. In this paper,
we discuss the main results of our work with respect to two
challenging use cases, namely amplification attacks and network
covert channels.

Index Terms—Network covert channels, cloud computing,
eBPF, amplification attacks, Kubernetes

I. INTRODUCTION

New computing models are today available that leverage vir-

tualization, ubiquitous connectivity and multi-tenancy. Origi-

nally conceived to improve the management and efficiency

of data centers, the cloud paradigm has been progressively

extended to the edge of access networks and to personal

devices, building a pervasive computing continuum that brings

unprecedented flexibility in placing and deploying distributed

applications. Beyond cost reduction by replacing physical

appliances with (cheaper) commodity hardware and more agile

management processes with software-defined infrastructures,

this new opportunity has also accelerated the transition from

monolithic and rigid software architectures to micro-services

and service meshes, which helps place the different software

components into multiple infrastructures and locations, ac-

cording to cost, proximity, capacity, and many other types

of constraints. This evolution has not only interested typical

data-center applications, but has also extended to different

domains, being Network Function Virtualization the most

notable example.

Despite of the well-known benefits brought by cloud

paradigms, the main drawback is represented by the increasing

difficulty in managing security processes [1]. Even though

most of existing cyber-security appliances may be realized
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entirely in software and easily re-used with the Infrastructure-

as-a-Service (IaaS) model, this is not straightforward when

the deployment involves multiple infrastructures and when

different cloud models are used [2]. As a matter of fact, all

major cybersecurity vendors have already included specific

tools for the cloud in their products portfolio since many years,

but they often rely on specific agents and capabilities of the

virtualization infrastructure. In this respect, a transition from

infrastructure-centric to more service-centric architectures for

monitoring and inspection is desirable, which give better

visibility over the workload itself and be agnostic of the

underlying execution environment [3].

In ASTRID we tackled this challenge for the network

traffic, which is among the main attack vectors. The most

common network threats are still (Distributed) Denial of

Service (DDoS), also leveraging amplification from buggy

services in the Internet [4], and attacks against web services

and public APIs1; more recent threats come from network

covert channels, which are stealthy communications to hide

the presence of malware in compromised systems [5]. Our

main objective was to make the inspection process lightweight,

not bound to specific hardware/infrastructure capabilities, and

easily extensible to cope with the ever-evolving attack patterns

and threat landscape.

Our work leverages the extended Berkeley Packet Filter

(eBPF), a Linux native technology for instrumenting the kernel

at run-time. Even if it has been used for many years for

pinpointing performance issues, its application for security

purposes is also gaining interest in the recent years, as wit-

nessed by the increasing number of tools that make use of

this technology (e.g., Suricata, Sysdig Falco, Cilium). Since

there is not a standard management framework for eBPF, in

ASTRID we adopted Polycube2, which can be used to create

network service chains in the NFV domain [6]. Nevertheless,

as part of our exploitation plan we also developed a standalone

tool, named bccstego3, which is more portable than Polycube

to other use cases than NFV.

We compare our approach with a well-known and largely

used network monitoring tool, namely Zeek4, which can be

used to implement the same kind of processes our use cases

need. Zeek (formerly Bro) is fully open-source and provides

a flexible framework that is easy to extend; in this case, we

replicated the same features provided by our eBPF programs

1Application Programming Interfaces are commonly exposed today to
provide remote services; they are often implemented over HTTP(s).

2https://polycube.network/.
3https://github.com/mattereppe/bccstego.
4https://zeek.org/.
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in the Zeek language. For a subset of the considered use cases,

we also include a plain implementation in C code.

The rest of the paper is organized as follows. Section II

highlights the main innovations of our work. Section III briefly

introduces Polycube and the dynmon service developed in

ASTRID, whereas a brief introduction to bccstego is given in

Section IV. We describe the eBPF programs for our specific

use case in Section V, and then conduct deep performance

evaluation in Section VI. Finally, we give our conclusion in

Section VIII.

II. ASTRID INNOVATIONS

One of the main objective for the ASTRID project was

to follow an infrastructure-agnostic approach, extending the

scope of cloud workload protection platforms. We developed

a set of eBPF programs addressing packet inspection needs of

our network-oriented use cases. In particular, we demonstrated

the following main innovations:

• efficiency: deep packet inspection is possible (at least for

network headers) with a smaller execution footprint than

existing applications;

• extensibility: kernel can be instrumented at run-time from

the user-space in a safer way than with modules;

• portability: packet inspection without hardware or soft-

ware acceleration at the maximum speed allowed by a

virtualized infrastructure.

When combined together, these innovations allow service

operators more freedom in the selection of the environment(s)

to run their applications, both in terms of cloud models and

virtualization technologies. This is especially important for

cloud-native applications, which run in containers and cannot

add custom features to the running kernel.

In the rest of this Section, we elaborate on each innovation

separately.

A. Efficiency

Traditionally, network appliances implement packet pro-

cessing in hardware, because general-purpose architectures of

desktop and server computers does not fit well the workflow

for receiving, inspecting, and forwarding network packets.

This approach has been largely used for cyber-security pur-

poses as well, and many routing and switching devices today

report flow-level statistics and measurements.

With the growing adoption of softwarization and virtual-

ization techniques, hardware appliances can be seldom used,

because cloud applications are often designed to work in

different environments. Besides, the amount of network traffic

processed by a typical virtual service is not comparable

with physical infrastructures. In case of network services, the

solution is either to load balance the traffic among multiple

replicas of network functions, or to make usage of hardware

acceleration functions offered by the underlying infrastructure.

The last option is perfectly acceptable for packet forwarding,

which only considers a few fields of the lower protocol head-

ers; however, it is more challenging for security mechanisms,

which usually require deeper analysis and look for ever-

changing patterns.

To overcome the well-known limitations of existing built-in

networking stacks of common operating systems, which have

been largely designed to support the larger number of (even

outdated) protocols, a number of technologies and frameworks

have been proposed to by-pass this native implementation, and

to give direct access to hardware queues and functionalities

in Network Interface Cards (NICs), e.g., PF RING, Netmap,

DPDK, OpenOnLoad. Kernel by-pass functions are imple-

mented in the kernel, but the main processing code is usually

developed in user-space, because this is simpler for program-

mers and does not harm the stability of the whole kernel.

Unfortunately, this means that all the well-tested configuration,

deployment and management tools developed over the years

within the built-in stack become useless, and should be re-

implemented as well. Kernel bypass technologies have been

already integrated in cyber-security appliances; for instance

both Zeek, Suricata and nProbe can use plain PF RING and its

extensions, but their effectiveness in virtualized environments

is questionable [7].

Although kernel by-pass is able to process packets at line

rate for up to 10 Gbps Ethernet links5, there are several issues

with cloud and NFV deployments [8]. As a matter of fact,

the aforementioned technologies usually require the exclusive

allocation of resources (i.e., CPU cores) to achieve good

performance; this is perfectly fine when we have machines

dedicated to networking purposes but it becomes overwhelm-

ing when this cost has to be paid for every server in the cluster

since they permanently steal precious CPU cycles to other

application tasks.

Our investigation shows that, in a virtualized environment,

the usage of eBPF for packet inspection performs better than

existing tools, both in terms of speed and CPU/memory usage.

This is not surprising, because eBPF programs are executed

natively on the target platform6, which provides a notable

speed-up compared to an interpreted execution. Differently

from other frameworks (e.g., DPDK), which mitigate the

overhead of hardware interrupts by continuously polling the

NIC for new packets, eBPF programs are only triggered when

a packet is received. Therefore, a few CPU cycles are added

to the Kernel built-in processes, while avoiding to consume

almost all CPU in the absence of traffic.

Our analysis shows that our inspection tasks put an almost

negligible overhead on packet processing; of course, this is

also due to the ASTRID concept of moving as much aggrega-

tion and detection logic outside single agents, hence we can

say that the original objective has been largely achieved.

ASTRID agents can be replicated in all necessary virtual

functions without incurring in large overhead, which is useful

when there is the need for intra-pod monitoring or cross-cloud

deployments. This is important to reduce the usage of CPU,

memory and disk space, in order to make the deployment

process faster and to decrease the cost in case public cloud

infrastructures are used.

5https://www.ntop.org/nprobe/10-gbit-line-rate-netflow-traffic-analysis-using-nprobe-and-dna
6By default, eBPF programs are JIT-compiled into native machine code

before being executed, as the eBPF Just-in-Time flag is active by default in
latest kernel releases.
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B. Portability

The usage of hardware acceleration, including GPUs, to

improve the performance of virtual functions has been largely

investigated in the past, especially in the NFV domain. This

approach provides an optimal migration path from pure hard-

ware appliances to software instances, but also introduces

placement and deployment constraints that jeopardize some

of the main benefits of the cloud paradigm. As a matter of

fact, traditional “centralized” security appliances (e.g., global

datacenter firewalls) are hard to scale, leading to a more

distributed approach in which this function is implemented

directly on end hosts (e.g., datacenter servers).

To overcome most of the performance limitations that exist

for software packet processing, kernel by-pass approaches are

commonly used in NVF frameworks today. Despite of the

large performance improvement, the main drawback with this

approach is that all the network stack must be re-written;

moreover, custom or modified versions of NIC drivers are

usually required. Unfortunately, maintaining separate imple-

mentations from the standard kernel may become cumbersome

and require a non-negligible maintenance cost. In addition,

the availability and effectiveness of such technologies in a

virtualized environment is questionable, especially in the case

of public infrastructures and serverless models (i.e., Docker,

Kubernetes). Indeed, the current market trends show an in-

creasing interest towards the “cloud-native” model, where

elementary functions are packaged in containers, deployed as

microservices, and managed on elastic infrastructure through

agile DevOps processes and continuous delivery workflows.

Differently from the kernel by-pass approach, we investi-

gated the possibility to directly instrument the vanilla ker-

nel. The introduction of the eBPF technology has overcome

many typical limitations of packet inspection in the kernel,

which has always proved hard to evolve and to program. By

leveraging eBPF, which is a native kernel virtual machine

available in all recent versions (4.19 and 5.x) commonly used

in all installations, we achieve portability of our inspection

tools across different infrastructures and cloud models. By

extending the cloud workload protection model, we don’t

rely on any monitoring facility provided by the virtualization

infrastructure, because the same virtual application and service

already embeds the necessary instrumentation. By using eBPF,

we do not either require additional kernel modules or features

to be available, and we can use it in virtual machines as well as

in Linux containers7. In addition, the current implementation

uses Polycube to load eBPF programs and collect data. The

specific Polycube function, called dynmon, can be dynamically

loaded and remotely controlled by a REST-based interface,

which simplifies the integration with ASTRID control plane

(i.e., the LCP). Hence, we are effectively able to easily update

the existing application by providing a replacement that does

not disrupt the typical service workflow.

Definitely, our approach enables modern (cloud-native) ap-

plications to be easily deployed in traditional data-centers, in

7The scope of our approach does not cover unikernels. However, the interest
in containers has largely shadowed these technologies, which are not anyway
supported in a straightforward way by kernel-bypass frameworks either.

the cloud, in edge installations, and even in fog/IoT environ-

ments, with predictable performance. This effectively realizes

the ASTRID objective of decoupling security processes from

service management, because we don’t put hardware or soft-

ware constraints to the orchestration logic.

C. Extensibility

Fixed kernel network applications (or the associated kernel

modules [9]) are notoriously slow and inefficient given their

generality. In addition they have also proven hard to evolve

due the complexity of the code, and the criticality to write

safe code that does not harm the system in terms of stability,

availability, performance, and data loss.

Traditionally, custom packet inspection tools have relied

on raw sockets and the pcap library8. These are effective

mechanisms to get raw packets in parallel to the Kernel, but

they basically duplicate packets within the system and are

largely ineffective to perform mitigation actions (like dropping

or redirection).

By contrast, eBPF programs follow the same development

process of userspace applications and can be created indepen-

dently from the kernel development process. They are dynam-

ically injected into the kernel, hence they allow the creation

of inspection tasks that are tailored to the actual requirements

of external detection and analytics processes, as opposed to

static kernel implementations. The kernel provides a run-time

verifier that analyzes all possible execution branches of an

eBPF program before loading it. eBPF programs are rather

limited in terms of memory access and available functions;

indeed, operations outside the eBPF environment are carried

out only through specific “helper” functions that further limit

the likelihood of introducing faulty programs.

One major limitation for using eBPF programs is that they

often require a specific userland counterpart to take care of

control and management. For example, Suricata is currently

able to load custom eBPF programs, but they are limited to

a few operations (filtering, bypass, load balancing) and must

comply with specific programming patterns9.

In ASTRID, we addressed this issue by introducing dynmon,

a transparent service that allows the dynamic injection of

eBPF code in the Linux kernel, enabling the monitoring

of the network traffic and the collection and exportation of

custom metrics. The possibility to run custom code brings

unprecedented flexibility in defining inspection rules, which

are no more bounded to pre-defined patterns, as it happens

in signature-based detection tools as Suricata, or events, as in

Zeek, and are also more efficient than regular expressions or

similar logic. Both Suricata and Zeek give access to a large

number of protocol fields10; the Zeek script language is far

more powerful than Suricata rules, but they are interpreted at

run-time and not suitable for high packet rates. According to

8https://www.tcpdump.org/.
9https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html#

setup-ebpf-bypass.
10See, for instance, the list of available keywords for Suricata rules:

https://suricata.readthedocs.io/en/latest/rules/index.html, and the list of pro-
tocol analyzers for Zeek: https://docs.zeek.org/en/master/script-reference/
proto-analyzers.html#zeek-dns.
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the documentation, Zeek is not able to efficiently inspect fields

that are present in each individual packet (e.g., IP headers).

The remarkable aspects of our approach is that exactly the

same userland utility (namely, the dynmon service) is used to

load and run programs that generate different metrics, without

specific constraints on the data structure, even though structs

and unions are not supported. This is mostly due to the export

formats (JSON and OpenMetrics), because OpenMetrics does

not support complex data structures. A large number of eBPF

map types is currently supported, including plain and per-cpu

hash, LRU hash, array, queue and stack. Finally, it also sup-

ports atomic eBPF maps content read thanks to an advanced

map swap technique, and maps content deletion when read.

The dynmon programming model is looser than what required

by Suricata, allowing a larger degree of extensibility (even if

the scope of the two tools is rather different).

Finally, we point out that extensibility does not necessarily

mean that users have to re-develop everything from scratch.

Since we introduced a new technology in ASTRID, the current

platform only covers a few challenging use cases (DNS/NTP

amplification attacks, network covert channels), but lack all

common rules that are usually available in commercial and

open-source projects. In this sense, it is not comparable with

the maturity of direct competitors. This is due to the low TRL

of the Project, that mostly focused on the introduction of new

ground-breaking technologies rather than mere extensions of

existing tools. Commercial exploitation would require a rich

set of eBPF programs to cope with all common detection

needs.

III. POLYCUBE AND DYNMON

Polycube is conceived as a framework for developers of

network functions in the NFV world [6]. Its peculiarity is the

usage of eBPF for in-kernel packet processing, which is then

combined with userland applications to allow both fast and

slow paths, similar to what happens in the OpenFlow imple-

mentation. Polycube implements a control and management

plane for eBPF programs, taking care of common operations

as loading, configuration, data collection, unloading. It enables

the creation of arbitrary and complex network function chains,

with strong characteristics of isolation, persistence (e.g., across

server reboots) and composability.

The elementary management unit is the Cube, which im-

plements a specific type of network function: bridge, router,

nat, load balancer, firewall, DDoS mitigator, etc. Cubes are

similar to plugins that can be installed and launched at run-

time. They plays a similar role to software images in common

virtualization models, which can be used to create multiple

instances with their own configuration, attachment points, and

life-cycle management.

Several cubes can be chained together to create complex

applications; the framework already provides a CNI plug-in

for Kubernetes, which can handle the network of an entire

data center, and a more efficient and scalable clone of the

existing Linux iptables. This motivated the usage of Polycube

to implement fast and lightweight security agents, which can

therefore easily be integrated both in virtual network services

(for instance, 5G deployments) and cloud-native applications.

NIC

Linux Kernel

TC subsystemebpf

template

Python

code

ipstats.py

clsact

ip_stats_map

file or 

stdout

User space

Code

replacement
Compilation

Data

Loading

Fig. 1. Architecture of the bccstego framework.

An additional cube for monitoring network packets have

therefore been developed, named dynmon. According to the

Polycube architecture, it is composed of a data plane for packet

inspection and a control plane for collecting and exporting

measurements from the data plane. As already discussed in

Section II, the innovative aspects of dynmon is the generic

control plane designed to run heterogeneous eBPF programs,

with loose a-priory limitations on the kind and structure of

data produced. Eventually, this allows to collect any kind

of measurements on the network traffic, only limited by the

constraints on eBPF programs and data exporters11.

IV. BCCSTEGO

bccstego was conceived as part of the CNR exploitation

plans as standalone tool to run the same programs already

developed for Polycube. The underpinning concept behind

bccstego is automatic code generation at run time, which

eliminates the need for developing and maintaining many

different programs for similar purposes. This is clearly evident

for both the amplification attacks and network covert channels

described in Section V, where several slightly different pro-

grams have been developed for each use case. Indeed, as the

name suggests, bccstego targets steganographic threats, which

are challenging to address with a single program because of

the virtually unlimited number of techniques that can be used.

This represents a perfect scenario for run-time code generation,

hopefully driven by some form on artificial intelligence in the

future.

Fig. IV shows the current architecture of the framework.

This is only the first kernel of our future work, so the

inner logic for code generation is rather simple. Basically,

the main executable ipstats.py is a Python application

that follows the typical BCC framework12. A template for the

eBPF program is therefore embedded into the same Python

code; this template contains all necessary instructions for

parsing IPv4/6, TCP and UDP protocol headers, and includes

some placeholders. At run-time, according to the request for

monitoring a specific field, the placeholders are replaced with

appropriate code snippets, to read the current value of the field

and to create the statistics described in Section V-B.

11The limitation on allowed export formats can be easily overcome if
support for OpenMetrics is not explicitly required.

12BPF Compiler Collection, available on line: https://github.com/iovisor/
bcc. Last Accessed: July 2021.
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Fig. 2. Typical attack pattern for volumetric DDoS with amplification.

Although it looks rather trivial, the current mechanism

for generating the code requires minimal additional input to

monitor a new field, hence facilitating the maintenance and

extension to cover additional protocols. Indeed, all separate

programs developed for Polycube are now generated from a

common template in this tool. Of course, as already discussed

in a companion report [7], the lightweight nature of eBPF

programs require a more structured approach to parse many

protocol layers.

V. USE CASE PROGRAMS

Several eBPF programs have been developed in ASTRID

based on multiple use cases, as briefly described in this

Section.

A. Amplification attacks

Detecting amplification attacks is a challenging task, be-

cause there are multiple vulnerable protocols and thousands

of servers scattered across the whole Internet [10]. From

the victim perspective, detection of these attacks is trivial,

because they fall under the umbrella of volumetric DoS (see

Fig. 2); however, mitigation may be difficult, since the traffic

comes from legitimate servers on the Internet. In any case,

mitigating at the victim site is usually ineffective, because the

Internet pipe is already saturated, not to count the overhead

for exploited servers and the Internet itself.

Riding the NFV wave, in ASTRID we investigated the pos-

sibility to detect and mitigate amplification attacks originated

in virtual instances of 5G networks [10]. The design of the

5G core follows a service-oriented architecture that facilitates

its virtualization with different cloud models. Accordingly,

it represents the ideal target for application of the ASTRID

framework.

The description of the overall detection pipeline was already

given in a previous paper [10]. Briefly, we integrate ASTRID

agents in the User-Plane Function (UPF), and look for packets

that may trigger an amplification attack, with the objective to

stop it at its source (see Fig. 3).

Here, we only focus on the eBPF programs that have

been developed for packet inspection in dynmon. We took

into consideration two protocols, namely DNS and NTP, and

their vulnerabilities. The NTP attack is based on sending a

command called monlist to an NTP server; the server returns

the addresses of up to the last 600 machines that it has

Fig. 3. The use case for NTP amplification attack.

interacted with. The request packet is only 234 bytes long,

but the response may sum up to several dozens of kilobytes,

depending on the number of returned addresses13. Similarly,

the DNS attack maximizes the size of the response packets by

using a query type of ANY, which means all available resource

records should be returned14.

We developed three distinct eBPF programs for each pro-

tocol:

• the first only measures the total number of query packets

seen for that protocol;

• the second looks for the specific amplification pattern in

the packet body, hence also giving the number of packets

containing the monlist command (for NTP) or ANY query

(for DNS);

• the last program is a modified version of the second, and

discards packets containing the monlist command (for

NTP) or ANY query (for DNS).

The source code of these programs is available in the ASTRID

software repository15.

B. Network covert channels

The detection of network covert channels is challenging,

because there is no knowledge of which fields may be affected.

However, the scope is usually restricted by the fact that many

header fields cannot be changed without breaking operation

of the corresponding protocol, hence triggering errors that can

be easily detected.

In ASTRID, we developed a set of eBPF programs that are

able to inspect the header fields of IP, TCP and UDP which

could likely be used to implement a covert channel. The result

of the inspection is an histogram that gives the number of

occurrences of all possible values that a field can assume. The

histogram can then be used to detect anomalies in the usage

of the specific field; currently, a threshold-based mechanism

has been developed by SIMARGL, but the idea is to make use

of some form of machine learning [4].

To make the system more scalable, the full range of possible

values is split into a number of equally-spaced bins; the

number of bins can be selected to find the best balance between

13https://blog.cloudflare.com/understanding-and-mitigating-ntp-based-ddos-attacks/.
14https://www.cloudflare.com/learning/ddos/dns-amplification-ddos-attack.
15https://github.com/astrid-project/astrid-framework/tree/main/

ebpf-programs/amplification.
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Fig. 4. Mapping field values to bins.

TABLE I
CONFIGURATION OF OPENSTACK SERVERS USED FOR TESTING.

Node vCores vRAM vStorage

Sender 1 1 GB 16 GB
Receiver 1 1 GB 16 GB
Forwarder 4 2 GB 32 GB

precision and memory usage. Fig. 4 gives an example of

operation of our eBPF programs for the flow label field of

IPv6.

The current set of programs covers the following protocols

and corresponding fields, which include almost every realistic

implementation of covert channels at the network and transport

layer (with the notably exception of ICMP):

1) IPv6: flow label, traffic class, hop limit [11];

2) IPv4: type of service/differentiated service code pointer,

identification [12]–[14], time-to-live [15], [16], fragment

offset [13], [17], internet header length;

3) TCP: ack number [14], [18], reserved bits [19], times-

tamp [20];

4) UDP: checksum [21]–[23].

All the programs are included in the ASTRID software repos-

itory16. They are also included in the standalone tool bccstego

(see Section IV).

VI. EVALUATION

To demonstrate the claimed innovation achieved in the

Project, our experimental evaluation was devoted to perfor-

mance measurements and comparison with a legacy tool,

namely Zeek. We considered both the impact of inspection

tasks on the traffic (e.g., delay introduced in packet flows)

and resource consumption in terms of CPU/memory usage.

We used three nodes in our testbed: the Sender that gen-

erates traffic, the Forwarder that runs the inspection agent,

and the Receiver that is the final destination of the traffic. All

nodes ran on the same hypervisor of an OpenStack installation,

2x Intel Xeon CPU E5-2660 v4@2.00GHz with 14 cores and

hyperthreading enabled, 128 GB RAM, 64 GB SSD storage.

The configuration of the OpenStack servers is reported in Table

I. To make a fair comparison in a meaningful scenario, we

ran our agents in a Docker container hosted in the Forwarder

environment, which monitor the ingress interface.

We used two Traffic Generators (TG) in our experiments:

16https://github.com/astrid-project/astrid-framework/tree/main/
ebpf-programs/stego.

Sender Forwarder Receiver

A
g
e
n
t

TG TS

Fig. 5. The topology of the experimental testbed. All main blocks were Virtual
Machines; the agent ran in a Docker container.

• iperf 17 was used to create IP traffic and to measure

relevant performance indexes at the receiver side (packet

rate, loss percentage, jitter);

• tcpreplay18 was used to replicate real word packets.

At the Receiver side, we only used iperf whenever possible

as Traffic Sink (TS).

Experiments were run for 10 minutes each, so to mitigate

as much as possible interference with other parallel activity,

both in the network and within the guest/host systems.

A. Zeek extensions

To evaluate the efficiency of our implementation, we con-

sidered Zeek. The choice was motivated by the fact that this

tool performs a similar role than ASTRID agents, namely

it provides raw measurements and delegates the detection to

external processes. Zeek parses network packets and generates

events, which are then processed by a powerful scripting

language. The output from a Zeek script can be recorded in log

files or can generate alerts for other cyber-security appliances.

Events generated by Zeek are mostly connection-oriented.

For instance, for the DNS case, an event is generated at

each request/reply, and contains relevant fields extracted from

the message. Hence, the resulting script is rather simple:

it just counts the number of DNS request events and the

number of occurrences with a query type of ANY. There is a

single program in this case because the event generated at the

reception of a DNS query always contains the query type. The

script and the configuration file to create the Docker container

used in the experiments are also available through the ASTRID

repository19. We do not expect meaningful differences in the

behavior of Zeek in case of NTP messages, therefore we did

not replicate the experiments for this protocol.

However, Zeek does not generate events on the reception of

individual IP packets, for performance reasons. Therefore, to

provide the same kind of functionality as our eBPF programs

for network covert channels, we patched the source code and

created a custom version that is able to report some fields from

the IPv4/v6 and TCP headers. Once the event is available, we

use the scripting language to catch it and to create the same

kind of histogram as eBPF programs. The source code of the

path, script, and docker file are kept in an external private

repository20.

17https://iperf.fr/.
18https://tcpreplay.appneta.com/.
19https://github.com/astrid-project/astrid-framework/tree/main/test/

zeek-dns.
20https://github.com/mattereppe/zeek-stego.
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Fig. 6. Latency experienced by packets across the forwarding node.

B. DNS packet inspection

We evaluated the efficiency of our DNS packet inspection

programs in Polycube. In this case, the Sender is representative

of the attacker, the Forwarder node of the UPF in a 5G

core, and the Receiver is the target for reflection. Indeed,

our experimental testbed is a simplified version of the general

scenario described in Sec. V, but it helps focus on the specific

objectives for our evaluation. We didn’t include any real 5G

function in our experiments, because they are not relevant

for our objectives. Finally, there is no server running at the

receiver, again because this is not strictly necessary for our

evaluation.

In these experiments we used tcpreplay to replicate two

kinds of real-word DNS packets: a simple query for an A-

type record, and a potentially rogue query of type ANY. To

get meaningful results, each test was run for at least 30 seconds

(tests with lower packet rate were run longer to get a larger

number of samples). Our evaluation considered variable packet

rates of 10, 100, 1000, 10,000 and 100,000 packets per second.

1) Impact on network traffic: The first evaluation consider

the impact of the inspection agents on IP traffic. Our main

finding was that we were able to receive packets at the full

transmission rates, with no packet losses. We only observed

0.42% of packet lost for Zeek with the highest transmission

rate. We therefore conclude that either of the inspection

technologies does not affect packet transmission.

2) Forwarding delay: Even in the absence of packet losses,

the deployment of an inspection probe may increase the packet

processing time, which turns into more forwarding latency.

This effect was not measurable in the previous experiment,

because there is no perfect synchronization between the Sender

and the Receiver (even if the accuracy with NTP is quite good).

We therefore considered the overall latency experienced by

packets across the Forwarder node. To this aim, we measured

the difference in the timestamp recorder by tcpdump for each

packet on the ingress and egress interface.

Fig. 6 compares the latency introduced by our programs and

Zeek with a baseline scenario; the latter corresponds to the

situation when no probe is applied. For our eBPF programs,

“raw” indicates the simple packet counter and “deep” indicates

the counter of packets with the ANY query.

With lower packet rates (namely, below 10,000 packets per

second), the impact of the considered inspection agents is

rather low. Indeed, even if the logarithmic scale largely hides

the effect, the agents introduce up to 50% additional latency

with respect to the baseline scenario. However, the overall

latency is always below 100 µs, which is anyway more than

acceptable for Internet traffic.

In some cases, Zeek seems to perform better than eBPF pro-

grams. However, while eBPF programs are really extensions

to the operation of the in-kernel network stack, Zeek captures

packets with a raw socket and then the inspection happens in

parallel to forwarding operations implemented by the kernel.

Overall, achieving close results to Zeek means that the impact

on standard kernel operations is rather low. In addition, we

remark that results may slightly vary for different realizations

of the experiment, hence we can consider the performance

almost equivalent.

Rather unexpectedly, the latency was lower for 10,000

packets per seconds. We repeated the experiments several

times, and got the same results. One possible reason is better

efficiency with this rate in the reception process (namely, fewer

hardware interrupts are generated); in any case, since our

objective is only to compare the tools, we did not investigate

in detail the cause of this behavior.

With the largest packet rate, the gain with respect to Zeek

largely increases. In this case, the latency introduced by Zeek

almost doubles with respect to eBPF programs. Overall, the

difference between raw and deep inspection is rather limited.

3) Processing delay: We already pointed out in the previous

Section that eBPF programs are de-facto extensions to the

operation of the kernel. So it is interesting to look at the

time to execute such programs. Even if this measurement is

not trivial to perform, we provide a reasonable estimation by

measuring the elapsed time from within the same program

(namely, timestamps are taken at the entry/exit point). Of

course, this does not account for the overhead to invoke and

run the eBPF function.

Fig. 7 shows the execution times measured under different

conditions. This time, we also considered the potential impact

of different queries, namely a request for an A record and an

ANY request. This impact is practically negligible from our

experiments; as in the previous case, the figures may slightly

changes in different realizations. Instead, the deeper inspection

requires more time, as expected, because of the larger number

of operations to be performed. Overall, the processing time is

always well below 1 µs, hence confirming the high efficiency

of this inspection method.

Similarly to the previous experiment, shorter processing

times are measured for the highest packet rates. Again, the

same behavior was observed for different realizations and we

do not have an explanation for this behavior; however, it is

worth being investigated deeper in the future.

4) Resource usage: Finally, we consider resource usage,

by using again the setup with tcpreplay, and investigate disk

usage, memory allocation and CPU usage.
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TABLE II
COMPARISON BETWEEN DOCKER IMAGE SIZES.

Tool Base Additional Total

zeek-dns 124MB (Debian testing) 307MB 431MB
polycube 63.1MB (Ubuntu 18.04) 206MB 269MB

Table II compares the size of docker images used in the

experiments. We roughly broke down the total size into the

base image size and the total of additional layers added by

the tool. The zeek image is larger; even if we consider that

we started from a bigger base image, the Zeek installation

took around 100MB more than Polycube21. This is not sur-

prisingly, because Zeek is a powerful flow processor tool;

unfortunately, most features are always embedded and cannot

be disable when simper operations are required. We also note

that the Polycube image includes all the cubes included in

the framework; hence, the additional layer to run dynmon is

practically negligible. For what concerns eBPF programs, they

are injected at run-time, hence not included in the figures of

Table II; however, their contribution is of a few kilobytes and

can be neglected.

Fig. 8 shows global CPU usage in both user-space (right

side) and kernel-space (left side). In this case, in addition to

packet rates used in other experiments, we also included the

fastest rate tcpreplay can send packets (which is basically the

same that can be achieved with 100,000 pps). Even if the

figures cannot be ascribed to the monitoring tools only, it is

clear that the impact of Zeek on CPU usage is more than

an order of magniture greater than Polycube. In the case of

Polycube, since all inspection operations are done in kernel

space, we note an increment of system CPU usage with higher

transmission rates, whereas there are no meaningful changes

for the user space, which only collects data with the same

rate. Instead, Zeek splits operation between kernel-space (for

capturing and duplicating packets) and user-space (for packet

21The Zeek image includes zeek executables and the necessary libraries
and tools.

inspection), and this is reflected in the increment of both

system and user CPU usage.

The total computing overhead of Zeek is even more evident

when we look at the cumulative CPU usage. Fig. 9, which

does not use the logarithmic scale, shows how the CPU usage

of Zeek rises up from 10,000 packets onward, which are the

likelihood conditions for a large-scale attack.

Finally, Fig. 10 shows an analysis of memory allocation

for the different tools. Not surprisingly, the virtual memory

size (VMS) of Zeek is far larger than Polycube, because the

program is in general more complex. It is also rather intuitive

that the eBPF programs does not impact memory allocation

for Polycube. For each tool, the RSS and PSS are basically

the same, because libraries are not shared with other processes

inside the docker container. Also the Resident Set Size (RSS)

and Proportional Set Size (PSS) of Zeek are higher than

Polycube, even if proportionally less than the VMS. If we

compare Zeek with our previous experiments [7], we need

less memory allocation in this case. This is because we are

running a single script on one interface in this experiment,

whereas in our previous work we ran the full stack on two

interfaces.

By considering the break down of memory usage for the

RSS, we note that Zeek allocates less memory to the process it-

self and shared libraries (“proc” and “lib” slices, respectively),

but have around the same heap size. Remarkably, a large slice

of memory indicated as “socket” is used for capturing packets

with the raw socket.

C. Inspection of IP/TCP/UDP protocol headers

We already investigated the precision of the data and its

usage in our previous work [3], [4], therefore in this study we

only focus on the impact on network operation and resource

usage. Accordingly, we do not need to reproduce covert

channels in our testbed, but just to replicate several traffic

conditions, also considering different transport protocols. For

this reason, we used iperf to investigate the influence of the

following parameters on the performance of the detectors:

• packet size and transmission rate for UDP flows;

• maximum segment size (MSS) for TCP streams.

For packet size, we considered 4 values that are represen-

tative of the following cases:

• 16 bytes is the smallest value allowed by iperf, and this

is the worst condition for packet forwarding;

• 1470 bytes is representative of the biggest Ethernet pack-

ets, also accounting for the presence of tunneling in the

underlying virtual network;

• 8192 bytes is the reference size for jumbo frames in

Ethernet, which is a common situation in all installations;

• 65507 bytes is the maximum size allowed by UDP and

the best condition for packet forwarding, but it is only

feasible on loopback interfaces (therefore, it can only be

used when VMs are running on the same host).

For the transmission rate, we considered a broad range of

different load conditions, from 10 Kbps to the unfeasible (at

least for our installation) rate of 10 Gbps. For the MSS, we

again selected 4 values that this time are representative of: the
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Fig. 8. CPU usage measured at the intermediate node, while varying the transmission rate of DNS packets.
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smallest value accepted by iperf3 (88 bytes), the minimum

value that should be used on IP links (536 bytes), the typical

value used for Ethernet links (1460 bytes) and the maximum

value accepted by iperf3 (9216 bytes).

The comparison includes the “baseline” scenario (where

no tool runs, just to understand the upper bounds on the

experimental setup), the standalone tool bccstego, the patched

Zeek version (that analyzes per-packet events as described in

Sec. VI-A), and a simple implementation of our inspection

mechanism in C (based on pcap). The last tool represents

the simpler form of parsing we can do to inspect network

packets, by leveraging the pcap framework. It is expected to

provide a lower bound to memory allocation and CPU usage

in user space, since compiled C is much more efficient than

interpreted Python code of bccstego. Kernel by-pass modules

were not considered because they are largely ineffective in our

setup [7].

We also compared the results got for monitoring different

fields, in order to verify the impact of parsing different

protocols and using more or less bins. Here, we only report

the results for the Flow Label (IPv6) and Time-To-Live (IPv4)

which uses 2
12 and 2

8 intervals, respectively. Additional

results that consider other protocols and fields can be found

in a companion paper recently submitted [24].

1) Impact on packet transmission: We evaluate the impact

on packet transmission by considering the measurements re-

ported by iperf3, namely the transmission rate, packet error

rate and jitter. Fig. 11 shows how the measured bitrate at

the receiver changes for different settings of packet size and

transmission bitrate for UDP flows. With smaller packet size,

it is not possible to achieve the higher bitrates, and this is a

general understanding for Ethernet links.

We note that all probing tools have limited impact with

respect to the transmission rate. Pcap-based tools duplicate

packets at the raw socket layer, hence the additional processing

have not a direct impact on forwarding operations. However,

eBPF programs are invoked on the kernel path, so it is a

very good result that our implementation does not limit the

maximum bandwidth with respect to the baseline. Finally,
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we did not notice significant differences when monitoring a

different field and protocol or using a different number of bins.

Fig. 12 measures the percent packet loss at the receiver

under the same conditions. As expected, it is correlated to the

bitrate shown in Fig. 11. When the transmission cannot achieve

the desired bitrate, we see higher packet loss. Apart the case

of small packets, packets are mostly dropped at the higher

bitrates (1/10 Gbps), which are not feasible in our setup. If

we do not consider these scenarios, the degradation of the

probing mechanisms with respect to the baseline is rather

limited, also considering that the results slightly change in

different realizations. Again, there is no significant differences

when monitoring a different field/protocol or using a different

number of bins.

The last UDP measurement is the average packet jitter,

shown in Fig. 13. The variation in the inter-packet delay is

negligible for practical applications (below 0.1 ms for all

scenarios but the largest packet size), and it is likely to be

highly affected by external factors (including perturbations in

the generator and the receiver). This means that the impact on

the transmission of real-time traffic (e.g., multimedia) would

be largely negligible. Similarly to previous indexes, there is

no tool which wins over all in every condition. Finally, no

meaningful differences are present when monitoring different

fields/protocols or using a different number of bins.

Finally, we show in Fig. 14 the transmission rate achievable

by TCP when generating packets for the whole duration of the

experiment. Not surprisingly, higher bitrate are possible with

larger MSS, because this has a beneficial impact on the TCP

flow control mechanism.

By looking at the performance indexes reported in this

Section, we can conclude that our eBPF-based mechanism

does not affect packet transmission in a significant way.

2) CPU usage: CPU and memory usage are important

to understand what is the impact on the operation of other

applications. We expect significant differences in the usage of

CPU between bccstego and the other tools, due to the different

architectural design. As a matter of fact, Zeek and our pcap-

based tool are basically user-space applications. The default

capture driver for Zeek is libpcap22. On the other hand, our

bccstego tool leverages in-kernel eBPF programs, hence the

usage of CPU from kernel and userspace is expected to be

rather different.

This is only partially confirmed by the measurements re-

ported in Figg. 15 and 16 for a UDP flow, which show

much higher CPU usage for user-space in case of our pcap

tool and Zeek. Both tools increase CPU usage at higher

bitrates, whereas bccstego is more constant across the different

conditions. Differently from what expected, there is a non-

negligible increase in kernel CPU usage for the pcap tool and

Zeek; this is probably due to the mechanism implemented by

libpcap to retrieve the packets. (please note the logarithm scale

is used in this case).

A more detailed breakdown of CPU usage confirms that

most time is spent in kernel and user-mode rather than other

22There are alternative capture drivers that can be used with Zeek, including
raw sockets, libpcap, and PF RING. We only considered libpcap in our study.

states. Fig. 17 shows that bccstego always brings a small

overhead with respect to the baseline. Quite interesting, due

to the implementation in Python, CPU usage is larger than

Polycube (see Fig. 9).

Similar considerations hold in case of TCP, which measure-

ments are shown in Fig. 18, 19, and 20. Even if the Python

language is not the best option in terms of processing speed,

bccstego performs better than all other alternatives, and limit

the additional CPU usage with respect to the baseline.

3) Memory allocation: For each user-space application, we

considered the memory size (virtual memory also accounting

for external libraries), Resident Set Size (RSS, namely the ac-

tual size of physical memory, again including shared libraries),

Proportional Set Size (PSS, namely the size of physical

memory with proportional attribution of shared libraries), and

Anonymous (the stack and other allocations not mapped to

files). Fig. 21 shows that Zeek has a larger memory space, but

only a minimal part is allocated in the RAM23. The memory

allocated to bccstego is larger because of the many libraries

needed by Python, which largely overcome what used by Zeek.

Interestingly, we see the impact of the larger number of bins,

reflected in the share of “anonim” memory.

The simple C implementation based on libpcap has a

negligible memory footprint, because it only uses the minimal

system libraries for input/output and libpcap. This suggests

the possibility to rewrite bccstego in C and switch to libbpf24

instead of BCC. Even if BCC hides the detail of compiling

eBPF programs for the specific system where it will run,

new developments promise the possibility to directly inject

compiled code into the verifier25.

VII. RELATED WORK

As typically happens for Kernel features (e.g, namespaces),

the eBPF technology provides the main enabler for code aug-

mentation, but control and management are left for third-party

tools. For monitoring performance issues, this is largely im-

plemented by the BPF Compiler Collection (BCC)26. Beyond

the rich set of ready-to-use tools, this framework provides a

python class that hides the technical details of compiling and

loading eBPF programs; however, users are still required to

develop their own code for retrieving and exporting data.

A higher-layer interface is provided by bpftrace27, a tracing

language that compiles scripts to BPF-bytecode and makes

use of BCC for interacting with the Linux BPF system and

existing Linux tracing capabilities. The bpftrace language is

inspired by awk and C, and predecessor tracers such as DTrace

and SystemTap.

23There are some differences in the breakdown of memory allocation with
respect to Fig. 10 (e.g., the “socket” share). This is because in case of
amplification attacks we used the installation provided by Debian, whereas
for investigating network covert channels we patched and therefore compiled
our own version of Zeek, without replicating the same compilation flags as
the Debian version.

24https://github.com/libbpf/.
25See BPF Portability and CO-RE, https://facebookmicrosites.github.io/bpf/

blog/2020/02/19/bpf-portability-and-co-re.html.
26https://github.com/iovisor/bcc.
27https://github.com/iovisor/bpftrace.
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Fig. 11. Measured bitrate at the receiver, while varying packet size and the transmission bitrate for a UDP flow.
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Fig. 12. Measured packet loss at the receiver, while varying packet size and the transmission bitrate for a UDP flow.
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Fig. 14. Measured bitrate at the receiver, while varying the MSS for a TCP flow.
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Fig. 15. CPU usage measured at the intermediate node, while varying the packet size and transmission bitrate for a UDP flow. The monitored field is Flow
Label.
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Fig. 16. CPU usage measured at the intermediate node, while varying the packet size and transmission bitrate for a UDP flow. The monitored field is
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(b) 1470-bytes payload
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(c) 8192-bytes payload
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(d) 65507-bytes payload

Fig. 17. Cumulative CPU usage measured at the intermediate node, for a UDP flow. The monitored field is the Flow Label.
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Fig. 18. CPU usage measured at the intermediate node, while varying the MSS for a TCP flow. The monitored field is Flow Label.
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Fig. 19. CPU usage measured at the intermediate node, while varying the MSS for a TCP flow. The monitored field is Time-To-Live.
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Fig. 20. Cumulative CPU usage measured at the intermediate node, for a TCP flow.
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Fig. 21. Memory allocation for the different user-space tools.
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VIII. CONCLUSION

In this paper, we have conducted detailed performance

evaluation for a set of eBPF programs developed to cover the

monitoring needs of ASTRID use cases. Our analysis took into

consideration the programs themselves and the framework to

dynamically load and manage them at run-time, namely Poly-

cube. In addition, we included a first artefact which is part of

our exploitation of ASTRID knowledge, namely bccstego. We

demonstrated that our initial objective of having lightweight

agents suitable to be integrated in virtualized services have

been achieved. As a matter of fact, our framework have similar

impact on packet transmission as other well-known tools, but

far less CPU and memory usage.

We also discussed the greater flexibility brought by leverag-

ing the eBPF framework. Simple programs can be developed

to create custom statistics on any protocol field; other tools,

as Zeek, have a powerful scripting language to build custom

metrics as well, but they lack the necessary events for all the

protocol stack. As a matter of fact, managing per-packet events

with Zeek is not possible; custom extensions are required to

use this feature, but they lead to great performance degradation

with respect to our tools. The main drawback of our approach

is the steeper learning curve than typical scripting languages

and rule patterns; however, once the program structure and the

restrictions imposed by the verifier have been understood, the

flexibility and versatility of C-like programming is incompa-

rable.

We are currently planning to demonstrate our approach with

further challenging use cases; in addition, we are interested in

pursuing the concept of dynamic code generation in a more

structured way. Additionally, we plan to extend the comparison

with other tools, mainly Suricata, at least for what concerns

amplification attacks.
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