Dataset Open Access

Pre-Processed Cancer Multi-Omic Data from TCGA and Synthetic Data

Zhandos Sembay


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/daef9ebc-6efc-4798-a7ba-a6dd4bcbef86/DastasetFiles.zip"
      }, 
      "checksum": "md5:c1a73e54862a2657482af85e357e432f", 
      "bucket": "daef9ebc-6efc-4798-a7ba-a6dd4bcbef86", 
      "key": "DastasetFiles.zip", 
      "type": "zip", 
      "size": 35784329
    }
  ], 
  "owners": [
    239165
  ], 
  "doi": "10.5281/zenodo.5120970", 
  "stats": {
    "version_unique_downloads": 16.0, 
    "unique_views": 138.0, 
    "views": 150.0, 
    "version_views": 150.0, 
    "unique_downloads": 16.0, 
    "version_unique_views": 138.0, 
    "volume": 572549264.0, 
    "version_downloads": 16.0, 
    "downloads": 16.0, 
    "version_volume": 572549264.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.5120970", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.5120969", 
    "bucket": "https://zenodo.org/api/files/daef9ebc-6efc-4798-a7ba-a6dd4bcbef86", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.5120969.svg", 
    "html": "https://zenodo.org/record/5120970", 
    "latest_html": "https://zenodo.org/record/5120970", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.5120970.svg", 
    "latest": "https://zenodo.org/api/records/5120970"
  }, 
  "conceptdoi": "10.5281/zenodo.5120969", 
  "created": "2021-07-22T00:26:07.484452+00:00", 
  "updated": "2021-07-22T16:47:56.975321+00:00", 
  "conceptrecid": "5120969", 
  "revision": 3, 
  "id": 5120970, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.5120970", 
    "description": "<p><strong>ABSTRACT&nbsp;</strong></p>\n\n<p>It contains the data of four omic profiles (CNV, mRNA, miRNA, and protein) obtained for BRCA, LGG, and LUAD obtained from the TCGA project.&nbsp;</p>\n\n<p>In addition, we provide synthetic data for a mixture of isotropic distributions.</p>\n\n<p><strong>Instructions:&nbsp;</strong></p>\n\n<p>Cancer data are identified by cancer type (LGG: low-grade glioma, BRCA: breast cancer, and LUAD: lung cancer). The data are scaled by using the minima and maxima of each column so that the values are between 0 and 1. In these files, the columns are the features and the rows correspond to the patients.</p>\n\n<p>The summary data contains only the numerical values. The columns are the features and the rows are the observations.</p>\n\n<p><strong>Inspiration:</strong></p>\n\n<p>This dataset uploaded to U-BRITE for &quot;AI against CANCER DATA SCIENCE HACKATHON&quot;</p>\n\n<p>https://cancer.ubrite.org/hackathon-2021/</p>\n\n<p><strong>Acknowledgements</strong></p>\n\n<p>Diego Salazar, June 20, 2021, &quot;Pre-processed Cancer multi-omic data from TCGA and synthetic data&quot;, IEEE Dataport, doi: https://dx.doi.org/10.21227/pjb8-d090.</p>\n\n<p>https://ieee-dataport.org/documents/pre-processed-cancer-multi-omic-data-tcga-and-synthetic-data</p>\n\n<p><strong>U-BRITE last update date:</strong>&nbsp;07/21/2021</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Pre-Processed Cancer Multi-Omic Data from TCGA and Synthetic Data", 
    "notes": "U-BRITE location: /data/project/ubrite/cancer-hackathon/org/ieee-dataport/pre-processed-cancer-multi-omic-data-tcga-and-synthetic-data", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "5120969"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "5120970"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "ubrite"
      }
    ], 
    "keywords": [
      "cancer", 
      "multi-omic"
    ], 
    "publication_date": "2021-07-21", 
    "creators": [
      {
        "name": "Zhandos Sembay"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.5120969", 
        "relation": "isVersionOf"
      }
    ]
  }
}
150
16
views
downloads
All versions This version
Views 150150
Downloads 1616
Data volume 572.5 MB572.5 MB
Unique views 138138
Unique downloads 1616

Share

Cite as