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Abstract The advances in information technology have had a profound impact
on emergency management by making unprecedented volumes of data available to
the decision makers. This has resulted in new challenges related to the effective
management of large volumes of data. In this regard, the role of machine learn-
ing in mass emergency and humanitarian crises is constantly evolving and gaining
traction. As a branch of artificial intelligence, machine learning technologies have
the out-standing advantages of self-learning, self-organization, and self-adaptation,
along with simpleness, generality and robustness. Although these technologies do
not perfectly solve issues in emergency management, and have been showed to can
greatly improve the capability and effectiveness of emergency management. The
purpose of this chapter is to discuss a hybrid crowdsourcing and real-time ma-
chine learning approaches to rapidly process large volumes of data for emergency
response in a time-sensitive manner. We review the application of machine learning
techniques to support the decision-making processes for the emergency or crisis
management and discuss their challenges. Additionally, we discuss the challenges
and opportunities of the machine learning approaches and intelligent data analy-
sis to distinct phases of emergency management. Based on the literature review,
we observe a trend to move from narrow in scope, problem-specific applications
of data mining and machine learning to solutions that address a wider spectrum
of problems, such as situational awareness and real-time threat assessment using
diverse streams of data. In particular, this chapter also focuses on crowdsourcing
approaches with machine learning to achieve better understanding and decision
support during a disaster, and we discusses the issues on the approaches in terms
of data analysis. Several examples of the tweet related to emergency are discussed
to more deeply contemplate the issues.
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1 Introduction

In the contemporary society, a variety of emergencies take place more and more
frequently. Necessarily, a considerable number of emergency incidents have threat-
ened to human life, environmental protection, social stability, and even political
relationship of all countries around the world [1]. In this regard, sociologists of
emergencies have been working to define emergency for decades. There is a broad
consensus that emergencies are social phenomena, characterized by a disruption of
routine and of social structure, norms, and/or values. It implies that the severity of
a emergency is more related to the extent of the disruption of social life as aspects
of governments, business, and individuals, than the measurable magnitude of the
hazard [2]. Therefore, the negative effects of emergencies emphasize the need to
improve the emergency management capability and strengthen the security for all
countries in the world.

1.1 Emergency Management

The definition of emergency management can be extremely broad and all-encompassing.
Unlike other, more structured disciplines, it has expanded and contracted in re-
sponse to events, congressional desires, and leadership styles [3]. Some representa-
tive definitions in the literature are as follows:

– According to definition of the Federal Emergency Management Agency (FEMA)
in USA, the process of emergency management consists of preparing for, miti-
gating, responding to, and recovering from an emergency when a disaster arises
[4].

– More modern emergency management involves processes to apply modern tech-
nologies and management methods to effectively and efficiently monitor, re-
sponse to, control, and process events, by integrating various social resources
and analyzing scientifically the cause [5].

– A simple definition for emergency management is “a discipline that deals with
risk and risk avoidance.” Risk represents a wide range of issues, and the range
of situations that might possibly involve emergency management or the emer-
gency management system is vast. This supports the premise that emergency
management is essential to the security of everyones daily lives and should be
integrated into daily decisions and not just called on during times of disasters
[3].

In short, emergency management is a complex and multifaceted task that in-
volves a variety of management activities from managers and stakeholders when
emergency is not only arising but also the before and after of emergency, so as to
prevent the occurrence of unexpected events, to reduce the social damages, and
to mitigate the impacts. Based on the definitions of the emergency management,
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Fig. 1 The lifecycle of emergency management

the evolution of an emergency can be distinguished as three stages, namely pre-
emergency, in-emergency, and post-emergency, as shown in Figure 1. Chen et al.
described emergency management as a ‘4R’ process, namely reduction, readiness,
response and recovery. Reduction is referred to the pre-emergency phase, readi-
ness and response belong to the in-emergency phase, and recovery is referred to
the post-emergency phase. In each phase, the outcome of decision-making impacts
substantially the evolution of events and the effectiveness of emergency manage-
ment [5].

As aforementioned, emergency management is a multifaceted process to pre-
vent, reduce, respond to, and recover from the impact of the emergency on the
society. Because of the scale of events, emergency response requires the partic-
ipation and cooperation of multiple organizations (e.g., government, public and
private). This emphasizes the need for efficient and effective decision support sys-
tems, as it is practically impossible for a human decision maker to understand
and manage the complexity of the situation. Instead, problems such as situational
awareness [6] and building a common operating picture, shared among multiple
actors who often have only partial view of the situation, are becoming some of the
most urgent needs of emergency management [7].

However, the emergency data used to these decision support systems arises
the problems of delivering repetitive information and information overload [8].
Therefore, to improve the capability and effectiveness of emergency management,
machine learning techniques have been proposed.

1.2 Machine Learning

Emergency management is concerned not only with predicting the course and con-
sequences of disasters, but also mitigating those undesired consequences. This pro-
cess is undoubtedly a challenging task by the unprecedented volumes of data (e.g.,
forecast, news, web pages, data of social network service, and sensing data) and the
pressure of time [7]. Machine learning techniques have been proven to successfully
support the decision making processes in managing many complex problems. In
that sense, emergency management is no exception; however, it presents a variety
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of challenge to machine learning techniques for the emergency management. In
this section, we briefly introduce the category of machine learning.

Machine learning has progressed dramatically over the past two decades, from
laboratory curiosity to a practical technology in widespread commercial use [9].
Machine learning and data mining often use the same methods and overlap signifi-
cantly, but while machine learning focuses on prediction, data mining concentrates
on the discovery of (previously) unknown properties in the data. According to de-
pending on whether there is labeled instance which is consists of label and data,
Machine learning are typically classified into three categories as follows:

– Supervised learning: Supervised machine learning makes predictions about
future instances using externally supplied instances that consist of values and
a label. It’s goal is to build a concise model of the distribution of class labels,
and then a classifier based on the model is used to assign class labels to the
testing instances [10].

– Unsupervised learning: Unsupervised learning is inferring directly the prop-
erties of this probability density without the help of externally provided in-
stances providing correct label or degree-of-error for each observation [11].
There are representative algorithms like Apriori algorithm, K-means, and so
on.

– Reinforcement learning: Reinforcement learning deduces labels of instances
with a dynamic environment. There are two main strategies. The first is to
search in the space of behaviors in order to find one that performs well in the
environment, such as genetic algorithms, and the second is to use statistical
techniques and dynamic programming methods to estimate the utility of taking
actions in states of the world [12].

1.3 Scope and Organizations

This chapter focuses on the application of machine learning techniques to sup-
port the decision-making processes for the emergency or crisis management. We
start with the data-driven methodologies within the frameworks of machine learn-
ing and their roles and challenges in supporting different phases of emergency
management. We then discuss the characteristics of disaster data akin to 5 Vs of
big data and summary various applications cases of big data analysis. Next, with
respect to emphasizing the advance of the social media, we focus on reviewing
the crowdsourcing approaches with machine learning in emergency management,
and issues of the approaches are discussed in terms of the data analysis. Last,
several examples of the tweet related to emergency are discussed to more deeply
contemplate the challenges and opportunities.

Existing survey papers for machine learning techniques in emergency man-
agement have reviewed according to categories of the machine learning, or have
considered only some part of emergency tasks. Whereas, in this chapter, we re-
view the approaches of machine learning, have been proposed from 2010 to current,
along each task of emergencies. Therefore, we believe that readers can easily find
topics related to their interests and compare with existing approaches to little
more concretely grasp potentiality of their methods.
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2 Applications of Machine Learning in Emergency Response

As discussed earlier, within the present-day emergency management, the immedi-
ate and accurate decision making more and more relies on the capability of data
analysis and processing. Therefore, there is an urgent need to enhance the machine
learning functionality of emergency management, such as, to develop scalable and
real-time algorithms for time-sensitive decisions, to integrate structured, unstruc-
tured, and semi-structured data [1]. In this section, we attempt to introduce the
tasks of machine learning in each phase of emergency management and review the
challenges and benefits of various machine learning techniques for the emergency
management.

2.1 Machine Learning Techniques for Emergency Management Cycles

Successful emergency management requires a variety of tasks based on various
technologies of machine learning within across the board three phases mentioned
in Section 1.1. Figure 2 shows the tasks related to machine learning for each phase
of the emergency management as follows: (1) predicting the occurrence of potential
events and discovering the early warning signs; (2) during the emergency, detecting
the events occurred and tracking change of the incidents, and recognizing situations
of people, supply, and so on; (3) evaluating the loss caused by incidents and the
execution of response, and simultaneously adjusting volunteer efforts based on
crowdsourcing to recover from an emergency.

Fig. 2 Tasks related to machine learning in emergency management

– Event Prediction: it is forecasting emergency using technology and inter-
pretation methods, and can be achieved by extracting features or pattern.
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Although there is no prediction method with perfect accuracy, early detection
of natural disasters reduces hazards in nearby locations [13].

– Warning Systems: to detect impending emergency can give that information
to people at risk, and enable those in danger to make decisions and early take
action [14]. These systems have improved drastically in recent years but they
are not perfect yet.

– Event Detection & Tracking: Most systems based on machine learning
during crises start with detecting and tracking events. The events are mainly
associated with a specific time and location [15]. However, due to the online
nature of collected data, events may or may not be necessarily associated with
physical locations.

– Situational Awareness: it provides more deep recognition of events in emer-
gency using social media data related to specific information (e.g., caution,
advice, donations, casualties and damage) and smart-phones which typically
mount various sensors such as camera, GPS, and accelerometer [7].

– Emergency Evaluation: it is one of critical and complex tasks in emer-
gency management [1]. In post-emergency, the activity outcomes (e.g., loss of
resources, recoverability, performance and social influence) for current emer-
gency should be measured to suppress the deterioration of next emergency.

– Crowdsourcing: this task is a sourcing model in which organizations use pre-
dominantly advanced Internet technologies to harness the efforts of a virtual
crowd to perform specific organizational tasks [16]. It may allow to immedi-
ately collect the statuses and requirements of people after an emergency, and
analyzed and categorized the data collected to support relief operations.

Like this, there are various tasks for emergencies, and machine learning techniques
have been applied into each task to improve the effective and efficient emergency
management. Here, the approaches of machine learning will be reviewed for each
task.

2.2 Event Prediction

There were many tries used Neural Networks techniques for predicting emergency.
Shah and Ghazali were proposed Improved Artificial Bee Colony (IABC) algorithm
to improving the training process of Multilayer Perceptron (MLP) in order to over-
come local minimal and slow convergence of ordinary backpropagation (BP) [17].
And the IACB-MLP has showed that it is outperforms than conventional BP for
forecasting earthquake magnitude with time series data in California. Also, to pre-
dict magnitudes of earthquake and the impending event following the occurrence
of pre-seismic signals, Moustra et al. evaluated the performances of Artificial Neu-
ral Networks (ANNs) with various types of input data from the region of Greece
[18]. In their study, a feed-forward MLP type Neural Network were implemented
using the BP learning algorithm for training. A feed-forward BP algorithm has
been also applied into development of a time-dependent surrogate model of storm
surge [19]. As experimental results, storm surge was predicted by the 92 trained
networks for approaching hurricane climatological and track parameters in a few
seconds. Other approach based on ANN has been studied to forecast probabilities
of occurrence and re-occurrences of earthquake in the region of Chile by Reyes et
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al., and they used input values (e.g., the b-value, the Bath’s law, and the Omori-
Utsu’s law) which are strongly correlated with seismicity [20]. The occurrences
have been judged by threshold values which are adjusted for obtaining as few
as false positives as possible. In addition, a combination an ANN and Genetic
Algorithm (GA) has been proposed to predict 1-day-ahead Monsoon flood by Sa-
hay and Scrivastava [21]. Four wavelet transform-genetic algorithm-neural network
models (WAGANN) have been developed and evaluated for forecasting flows in
two Indian Reviers, the Kosi and the Gandak. In their experiments, WAGANN
models predicted relatively reasonable estimates for the extreme flows and showed
little bias for underprediction or overprediction.

A variety of clustering methods has been also applied into the prediction task
for emergency management. An approach for the prediction of the seasonal tropical
cyclone activity over the western North Pacific has been developed to provide use-
ful probabilistic information on the seasonal characteristics of the tropical cyclone
tracks and vulnerable areas [22]. In a developed model, the fuzzy c-means cluster-
ing has been used to forecast tropical cyclone tracks and density over the entire
basin. From an experiments, seven patterns were founded to draw a map of the sea-
sonal track density of tropical cyclone. Moreover, the k-means clustering technique
has been combined with the statistical regression techniques for the inducement
the weather phenomenon in forecasting the cloudburst [23]. The approach clusters
atmospheric pressure according to areas of strong relative humidity for discover-
ing weather patterns. To predict wildfire risk using weather data, Context-Based
Fire Risk (CBFR) model has been developed based on clustering and ensemble
learning techniques by considering the inherent challenge arising due to the tem-
poral dynamicity of weather data [24]. These two machine learning techniques are
used to anomaly detection. A particle swarm optimization algorithm-based clus-
tering method with abnormally high-dimensional data has been also proposed to
forecast earthquake [25]. A model analyzes relationships between earthquake pre-
cursor data and earthquake magnitude, and an average distance between clusters
is set as the evaluation function of the particle swarm optimization clustering al-
gorithm. Experimental results indicate that this model can effectively and validly
predict the earthquake magnitude in accordance with the earthquake precursor
data than k-means algorithm model. Additionally, an ant-colony clustering algo-
rithm has been introduced in earthquake prediction by Shao et al [26]. Measure
parameters include spatial entropy, mean-fit and un-similar for clustering analysis.
As their experiments, it showed that their algorithm could achieve better results
than the traditional k-means algorithm to forecast of earthquake like the swarm
optimization algorithm-based clustering method.

Decision trees which have often fast and accurate performance in machine
learning, have been combined with other techniques, to predict emergencies. To
predict disaster before it’s occurrence, there are many studies which combine the
decision tree with various machine learning techniques such as Regression [27],
hidden Markov Model [28], association rule learning [29,30] and fuzzy logic and
particle swarm optimization [31]. In particular, decision tree techniques have been
also applied into prediction of surroundings (e.g., flood susceptible areas [32] and
landslide susceptible areas [33]) for emergency situation.
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2.3 Warning Systems

Large magnitude emergency such as earthquake and flood to kill and injure tens to
hundreds of thousands of people, inflicting lasting societal and economic disasters.
Early warning could provides seconds to minutes of warning, allowing people to
move to safe zones and prepare activities like automated slowdown and shutdown
of transit and other machinery [34].

For early detection and warning of emergency in environments with wireless
sensor networks (WSNs), Bahrepour et al. have tried to consolidate a general
decision tree with the reputation-based voting method [35,36]. In their works,
early event warning of emergency are fulfilled with distributed event detection. As
experimental results with wild and residential fire datasets, it was showed that their
approach not only achieves a high detection rate but also has a low computational
overhead and time complexity. In addition, a Random Forest (RF) based decision
tree was applied into analysis of the potential factors affecting the satellite signal to
announce the flood by Revilla-Romero et al [37]. They investigated various satellite
data for 322 rivers in Africa, Asia, Europe, North America and South America.
Their experiments shown that mean discharge, climatic region, land cover and
upstream catchment area are the dominant variables which determine good or
poor performance of the measurement sites.

ANN techniques have been applied into warning emergency with more various
perspectives. Kong et al. used a smartphone-based seismic network which consists
of smart device contains accelerometers [34]. The ANN was used to separate data
collected from personal smartphone sensors into activities of the earthquake and
human to warn earthquake. Additionally, to set an early warning threshold level
of dam, a continuous monitoring of long-term static deformation based on three
ANN approaches (i.e., the static neural network, the dynamic neural network and
the auto-associate network) was proposed [38].

Krzhizhanovskaya et al. developed a flood early warning system to monitor
sensor networks installed in flood defenses (e.g., dikes, dams and embankments),
detect abnormalities in sensor signals, calculate dike failure probability, and sim-
ulate possible scenarios of dike breaching and flood propagation [39,40]. In the
warning system, k-means clustering and Neural Clouds (NC) based classification
has role to detect abnormality of sensor parameters in critical pre-failure condi-
tions. Social media data that contains social concerns of people was used for early
warning system by Avvenuti et al [41]. Their system applies classification tech-
niques provided by Weka to distinguish Twitter messages into “useful” and “not
useful”, and several machine learning techniques are utilized to temporal and spa-
tial analysis of messages. There is also an other study considers social media data.
Fersini et al. implemented a decision support system using machine learning and
natural language processing to effectively detect and warn the earthquake [42]. On
a real Twitter dataset, their system has shown outperformed results to identify
messages related to the earthquakes and critical tremors.

2.4 Event Detection & Tracking

The Support vector machine (SVM) is a supervised learning model that defines
a kernel function able to transform the data to a high dimensional feature space
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when the data can be separated by linear models. SVM is designed for binary
classification in nature, but can also solve the multi-class classification problems
through one-against-one or one-against-all strategy. SVM was found be effective in
emergency rescue evacuation support system for detecting and tracking a sudden
incident [43,44]. Pohl et al. taked advantage of the Self-Organizing Map (SOM)
and the Agglomerative Clustering (AC) for sub-event detection that operate on
Flickr and YouTube data [45]. As their mentions, multimedia data may be of par-
ticular importance to detect and track emergency event. Therefore, Vector Space
Model (VSM) was also utilized to represent and annotate the media data before
applying clustering techniques. Their experiments showed that social multimedia
in the context of emergency is worth using for detecting sub-events. Similarly as,
a method of cross-media analytic was introduced to detect and track emergency
events by using the clustering, the sentiment analysis, and the keyword extraction
[46]. Moreover, the semantic expansion and sentiment analysis were adopted to
quantify public sentiment time series.

Song et al. developed a model of human behavior that takes into account sev-
eral factors have been founded through empirical analysis between human mobility
and emergency to detect and monitor human emergency behavior and their mo-
bility during large-scale emergency [47]. For the model, they used Hidden Markov
Model (HMM) to model dependency between human behaviors in emergency. For
the Great East Japan Earthquake and the Fukushima nuclear accident, the effi-
ciency of the behavior model was evaluated. HMM for speech recognition technique
was applied into detecting earthquakes and tracking volcano activities [48]. To fit
the model parameters in to earthquake detection, Beyreuther et al. introduced
state clustering into their model to refine the intrinsically assumed time depen-
dency. As experiments in during around four months, their earthquake detector of
single station HMM showed that it can achieve similar detection rates as a com-
mon trigger in combination with coincidence sums over two stations. Akin to this,
an approach, which used audio data, proposed to identify anthropogenic disasters
by Ye et al [49]. In their approach, acoustic events are detected and learned using
the dictionary learning and the spherical k-means clustering. And detected events
then are classified into specific sounds (e.g., screaming, shouting, gun shout and
explosion) by a clustering technique based on the hierarchical regularized logistic
regression model. Experimental results with an audio dataset showed the effective-
ness of the proposed hazard sound recognition method. Singh et al. investigated
Twitter posts in a flood and proposed an algorithm to identify victims asking
for help. To categorize the posts into high or low priority tweets, the SVM, the
gradient boosting and the RF are applied. Furthermore, inferring users location
using the Markov model uses historical locations of users. In their experiments, the
proposed algorithm worked with its classification accuracy of 81%, and location
prediction accuracy of 87% [50]. In addition, Caragea et al. developed en enhanced
messaging for the emergency response sector, as a reusable information technology
infrastructure, to detect and track emergency [51]. They focused on correct clas-
sifying messages during disasters by using the SVM classifier. Furthermore, the
bag-of-words (BoW) approach, the feature abstraction, the feature selection and
the Latent Dirichlet Allocation (LDA) were applied into feature representation as
inputs for learning the classify. Besides, various techniques of machine learning
have been used for analysis of social media data to detect and track emergencies
[52–54].
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2.5 Situational Awareness

The recent advances of mobile devices that are capable of wireless communica-
tions and have sufficient computing power have caught attention of researchers
and practitioners. The devices can serve as automated sensors (typically equipped
with GPS, motion sensors, etc.), and are capable of relatively high quality imaging
and video recording. Therefore, they can be used into enhance situational aware-
ness by gleaning various information to produce accurate results [55]. Furthermore,
the advance of social networking services (e.g., Twitter, Instagram, Flicker, Face-
book, and others) allows people post their needs and gather the timely-relevant
information. Tweets as one of these messages were also investigated to detect
possible seismic events, to compare and contrast the people behavior during emer-
gency and to extract useful information using several extraction techniques [8].
Like this, social media is also a potential source for situational awareness in emer-
gency management. Recent disasters, such as the Hurricane Sandy of 2012, the
Typhoons Haiyan or Hagpuit in 2013-2014, or the Nepal earthquake in 2015 have
shown that information provided by eye-witnesses through social networking ser-
vices can greatly improve situational awareness.

Alam et al., for situational awareness during cyclone emergency, proposed a
social media image processing pipeline, which includes a noise filter and a damage
assessment classifier [56–58]. The Convolutional Neural Network (CNN) applied
into filtering out irrelevant image content, and the perceptual hashing technique
was employed for image de-duplication. Additionally, CNN technique was also
used for situational awareness during heavy rainfall by Li et al [59]. They focused
on using social remote sensing data for emergency response. The classification
results obtained for the central parts of Wuhan and Shenzhen demonstrated the
effectiveness of the CNN method considered for monitoring the heavy rainfall event
that happened in both cities.

Shen et al. proposed a method to retrieve events based on event-specific hash-
tags preliminarily collected for situational awareness of emergencies [60]. In their
experiments, the SVN showed best performance for extracting and classifing hash-
tags from data in Twitter. Then, the hashtags were used to collect relevant mes-
sages from not only Twitter but also other social media platforms. The SVM was
also introduced to extract features and classify texts [61]. Raginia et al. proposed a
hybrid method for segregating and classifying the texts obtained from people who
are at risk in the affected region for situational awareness of emergency. The results
showed that the text classification algorithm can help the emergency responders
to locate the people at risk in real-time.

For understanding situations in disaster response, Li et al. proposed a do-
main adaptation approach, which learns classifiers from unlabelled target data,
in addition to labelled data [62]. A Naive Bayes (NB) classifier and an iterative
self-training strategy were adopted for tweet classification. Their experiment re-
sults showed that the domain adaptation classifiers are better as comparing with
the supervised learning using only labelled data. Ramchurn et al. proposed an
emergency management system called HAC-ER for situational awareness from
large streams of reports posted by members of the public and trusted organiza-
tions [63]. They combined the independent bayesian classifier combination with
the gaussian process to remove errors and to predict locations of events in affected
areas by emergencies. Additionally, Imran et al. presented human-annotated Twit-
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ter corpora collected during 19 different crises and compared supervised learning
techniques such as the SVM, the NB and the RF in terms of the utility of annota-
tions [64]. Given the complexity of the multiclass classification of short messages,
it was indicated that all three classifiers have decedent results. To discover im-
portant topics from Twitter and provide useful information of situation awareness
during emergency, Yin et al developed an online incremental clustering algorithm
that automatically groups similar tweets into topic clusters [65]. They also adapted
optimization techniques (i.e., burst detection, text classification, online clustering,
and geotagging) to deal with real-time, high-volume text streams. It includes an
early indicator identification of unexpected incidents, an impact exploration of
events and an incidents evolution monitoring.

In general, to classify social media data may be tedious and time consuming
task, since the collected data are not in the form of a labelled data. Therefore,
Pandey and Natarajan utilized the semi-supervised machine learning approach [66,
67] to avoid the classification process and concurrently obtain useful information
in situational awareness. In addition, they also introduced an interactive map to
grasp the vulnerable areas during a emergency. Whereas, a reinforcement learning
technique was introduced to map dynamic situations in emergency. Sadhu et al.
proposed a Multi-Agent Reinforcement Learning (MARL) framework implemented
as a mobile application and a backend server [68]. Via both simulations and real
experiments, an evaluation of the framework in terms of effectiveness in tracking
random dynamicity of the environment was performed.

2.6 Emergency Evaluation

Trekin at el. applied CNN into developing a method of change detection on remote
sensing imagery to improve time effciency of assessment of damaged buildings in
disaster affected area [69]. Also, a deep learning-based framework for rapid regional
tsunami damage recognition using post-event on synthetic radar imagery was pro-
posed [70]. They applied the SqueezeNet network (as a CNN type) architecture
into a selection algorithm, and a recognition algorithm with a modified wide resid-
ual network was developed to classify the damaged regions. Via experiments on
Tohoku earthquake in 2011 and tsunami area, it was showed that the proposed
framework is fast in model training and prediction calculations. The potential of
CNN features was also explored for an online classification of satellite image to
detect structural damages by Vetrivel et al [71]. A feature extraction and classifi-
cation process are carried out at an object level, where the objects are obtained
by over-segmentation of satellite images. The proposed framework outperformed a
batch classifier with lesser time and memory requirements. As other usage case of
CNN for natural emergency evaluation, analysis of images posted on social media
platforms using the CNN was proposed [72]. Experimental results indicated that
the domain-specific fine-tuning of deep CNN outperforms Bag-of-Visual-Words
(BoVW). In addition, high classification accuracy under both event-specific and
cross-event test settings demonstrated that their approach can effectively adapt
deep-CNN features to identify the severity of destruction from social media im-
ages taken after a disaster strikes. Additionally, Attari et al. also introduced a
Nazr-CNN, a deep learning pipeline for an object detection and fine-grained clas-
sification in aerial images for assessing and monitoring damage [73]. In here, a
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hidden layer of a CNN was used to encode the popular BoVW of the segments
generated from the first component in order to help discriminate between different
levels of damage. Moreover, BP neural network as a kind of multilayer feed-forward
network was used in evaluation of city emergency management system for disaster
event by Jiang and Li [74].

Cervone et al. proposed a methodology that leverages data harvested from
social media for collecting remote-sensing imagery during disasters [75,76]. The
images are then fused with multiple sources for the damage assessment of trans-
portation infrastructure. In this method, DT was used to classify entire scenes
acquired. They also evaluated the proposed methodgology with considering Col-
orado floods in 2013 [76]. Zhang el as. proposed a machine learning framework
to assess post-earthquake structural safety [77]. In this framework, Classification
and Regression Tree (CART) and RF were implemented to map damage patterns
to classified structural safety states. For assessment of sensitive area for landslide
at the Pauri Garhwal in India, RF and CART were also compared with Logis-
tic Model Trees (LMT) and Best First Decision Trees (BFDT) [78]. The results
showed that the RF model has the highest predictive capability followed by the
LMT, BFDT and CART models, respectively. It was showed that although all
four methods have shown good results, the performance of the RF method was
the best for landslide spatial prediction.

An assessment model based on RF was adopted to evaluate regional flood haz-
ard [79]. The risk assessment method was implemented in Dongjiang River Basin,
China. In addition, the SVM technique was used for risk assessment as a compar-
ison, as well as an analysis of index importance degree. The spatial distributions
of the RF and SVM assessment maps showed a similar correlation coefficient, was
indicated that the classification capacity of the two methods is similar in the ma-
jority of cases. Joshi et al. introduced a methodology for detection of damage post
disasters by examining the textural features from high resolution aerial imagery
[80]. The proposed technique considered DT, NB, SVM, RF, Voting Classifier and
Adaptive Booster, and were compared to identify damaged regions from aerial im-
ages using only pre-event images as the input. As a result, the RF-based classifier
comparatively had higher accuracy than other classifiers. Yoon and Jeong applied
Cubist and RF techniques into assessment what vulnerability indicators are sta-
tistically associated with disaster damage in Korea, and found twelve indicators
to evaluate vulnerability of 230 local communities to disasters [81].

Zanini et al. proposed a procedure based on Fuzzy Logic (FL) for the eval-
uation of interactions between existing buildings and urban roadway networks
after a seismic event [82]. The methodology was applied to the Municipality of
Conegliano in Italy in the potential seismic damage scenario. Their experiments
showed it is able to evaluate the network link functionality reductions caused by
building damages, through the estimation of the residual road width, without the
necessity of carrying out expensive and detailed surveys on the analyzed area.
Izadi at el. proposed a neuro-fuzzy approach based on the GA and the SVM for
the semi-automatic detection and assessment of damaged roads in urban areas
using preevent vector map and both pre and post-earthquake QuickBird images
[83]. Experimental results showed the efficiency and accuracy of the Neuro-Fuzzy
systems for road damage assessment. Resch et al. introduced an approach based on
analyze social media posts to assess footprints and the damage caused by natural
disasters through combining LDA for semantic information extraction with spatial
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and temporal analysis for hot spot detection [84]. Furthermore, they provided a
damage map that indicates where significant losses have occurred. Their experi-
ments showed that earthquake footprints can be reliably and accurately identified
in our use case. Nadi and Edrisi introduced a Markov decision process as a multi-
agent assessment and a response system with reinforcement learning designed to
ensure the integration of emergency response and relief assessment operations [85].
Experiments indicated that the use of the proposed approach in assessing network
conditions and true demand during search and rescue operations can decrease
death tolls.

2.7 Crowdsourcing

Volunteers provide information and resources to the affected people and this pro-
cess has been facilitated by social media in recent years [13]. In this regard, for
some years now, both researchers and practitioners in the areas of emergency man-
agement have been exploring the role of crowdsourcing in collecting, processing,
and sharing information [86]. Although there are various roles of crowdsourcing in
tasks of emergency management, in this section, we focus on it’s usages in tasks for
post-emergency, especially related relief activities. The others will be investigated
and discussed in Sect .5. First we start with reviewing studies focused on crowd-
sourcing for post-emergency without considering machine learning techniques.

Landwehr and Carley have reviewed how social media is used in disaster by
individuals, first responders, and disaster researchers. They have also introduced
a variety of software tools that can be used by analysts to work with social media
and have discussed of several different directions in which some of the research on
social media usage in disaster is currently heading [87]. As aiming at efficiently
harnessing crowdsourcing in remote assistance in real-time, Yang et al. designed
and developed a crowdsourcing disaster support platform [88]. They considered
three unique features as follows: selecting and notifying individual requests, pro-
viding collaborative working functionalities, improving answer credibility through
“crowd voting.” In addtion, Dubey et al attempted to develop a theoretical frame-
work which can assist relief activities using valuable information derived using
comprehensive crowdsourcing framework in environments with Internet of things
[89]. They have conducted extensive review of articles published in reputable jour-
nals, magazines and blogs by eminent practitioners and policy makers. Murali et
al. proposed a multi-platform model to deal with disasters and support relief activ-
ities while handling the needs of victims, volunteers and government agencies [90].
Further, they used various techniques, ranging from Natural Language Processing
(NLP) to crowdsourcing, for ensuring robustness and scalablility of solution.

Various techniques of machine learning have been also combined with crowd-
sourcing to support relief activities in post-emergency. Most of the current systems
allow volunteers to directly provide input to them [91]. Hence, many social me-
dia posts in the aftermath of disasters might contain useful information. There
are several tries to extract the information from social media through a variety
of machine learning techniques such as LDA and DT [91], RF and NB classifier
[92]. In order to detect potential incidents implicated by victims negative emotions
in the post-disaster situation, Bai et al [93]. introduced a structured framework
including three phases. The NB, RF, SVM, and KNN techniques were compared
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each other in terms of to classify emergency-related messages, and the RF and
SVM were outperformed than the others. Harris et al. proposed an approach of
the post-phase situational awareness of an earthquake hit area to the rescue task
[94]. To ensure the credibility of the crowdsourced data, their system considers the
K-means clustering technique and maps coordinates of the calamity area through
a short messaging service. In addition, experimentation was carried out to evaluate
the time taken to notify via SMS. Imran et al. also applied a clustering technique
to the classification of crisis-related messages in microblog streams [95]. Social me-
dia messages are clustered together with textual similarity, and human curators
annotated the larger clusters first to train the classifer. Liang at el. introduced a
semi-supervised learning based cognitive framework to support emergency man-
agement through mapping crowdsourced data. The framework first divides the
satellite or aerial image into patches leveraging a graph-based clustering approach
[96]. The KNN classifier is then used to provide labels for a few patches. With
over 50 participants working on three different tasks, their experiments showed
that the crowdsourced variant performs well producing noise-tolerate flood maps.

3 Analysis of Emergency Data

Information exchange during and after the disaster periods can greatly reduce the
losses caused by the disaster. This is because it allows people to make better use of
the available resources and provides a channel through which reports on casualties
and losses in each affected area can be delivered expeditiously [97]. Furthermore,
the success of a disaster relief and response process is largely dependent on timely
and accurate information regarding the status of the disaster, the surrounding
environment, and the affected people [13]. Therefore, understanding, analytic, and
utilization of data collected in emergency are vital. In this section, we describe data
characteristics generated during disaster with considering the 5 Vs of big data and
various application cases of Big Data Analysis (BDA) are looked over.

3.1 Big Data in Emergency Management

The role of data in emergency management has been evolving. Nowadays, scien-
tists are facing one of the biggest challenges of managing large volumes of data
generated at times of disasters. As a huge amount of emergency-related data is
getting generated, traditional data storage and processing systems are facing chal-
lenges in fulfilling performance, scalability and availability [98]. Therefore, analytic
methods to manage and process data in emergency management are particularly
challenged due to the combination of it’s unique characteristics as follows:

– Rapid increase of data by many number of producers and consumers
– The timely sensitivity of detect and response
– Combination of static and dynamic data (e.g., maps and crowd emotion)

[96,99]
– Heterogeneous formats, ranging from raw data (e.g., sensors) to structured

data (e.g., metadata) and unstructured data (e.g., multimedia) [86]
– Various levels of trustworthiness of the data sources [100,101]
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– Possibility of extracting valuable information like crowdsoucing, gen-
erated by people who are actually at the emergency scene for near real-time
[97]

These characteristics similar to “5 Vs (i.e., volume, variety, velocity, veracity, and
value)” of big data. Besides, within the present-day emergency management sys-
tems, the immediate and accurate decision-making more and more relies on the ca-
pability of data analysis and processing especially in the face of big data [1]. There-
fore, there is an urgent need to enhance the BDA technologies of emergency man-
agement, such as, to develop scalable and real-time algorithms for time-sensitive
decisions, to integrate structured, unstructured, and semi-structured data, to deal
with the imprecise and uncertain information, to extract dynamic patterns and
outline the evolution of these patterns, to work in distributed environment, and to
present the multi-scale, multilevel and multi-dimensional patterns through various
visualization approaches [102].

BDA was often defined as holistic process to manage, process and analyze the
5 Vs in order to create actionable insights for sustained competitive advantages
[103]. In this regard, Mehrotra et al. suggested that BDA can aid to create the next
generation of emergency management technologies as it has the potential to miti-
gate the effects of disasters by enabling access to critical information in real-time
[104]. Also, they emphasized that “accurate and timely analysis and assessment of
the situation can empower decision makers during a crisis to make more informed
decisions, take appropriate actions, and better manage the response process and
associated risks.” Thus, it is essential to reconsider how data on disasters should
be properly and efficiently produced, organized, stored, and analyzed [105]. Here,
we briefly discuss the BDA for emergency management as processes separated such
as data collection, information extraction, data filtering and data integration.

3.2 Data Collection

Data collection is the process of inserting to a system data, which is coming from
multiple heterogeneous sources. Scalability is an important issue in data collec-
tion, since the flow of information may be very high during the time of a critical
event [106]. Traditionally, it was done in the form of paper reports or question-
naires. The development of IT allowed for use of word processors, spreadsheets,
and forms to enter data directly into the databases [7]. Moreover, sensing tech-
nologies are also currently undergoing rapid advances, leading to might use of
them significantly increases performance of situational awareness [107]. As an-
other increasingly important source, social media is a new way of communication
in the course of disasters. A major difference between social media and traditional
sources is the possibility of receiving feedback from the affected people [13]. Ad-
ditionally, for some years now, both researchers and practitioners in the areas of
disaster and emergency management have been exploring the role of crowdsourcing
in collecting, processing, and sharing information across organizations and affected
populations [86].
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3.3 Information Extraction and Filtering

The goal of information extraction is to to automatically extract structured infor-
mation, i.e., categorized and contextually and semantically well-defined data from
a certain domain, from unstructured machine-readable documents [106]. Whereas,
according to Wikipedia, a data filtering is that removes redundant or unwanted
information from an data stream using (semi) automated or computerized meth-
ods prior to provide it. Its main goal is the management of the data overload
and increment of the semantic information. If all the disaster information were
presented to the users, it would cause an overwhelming workload. Therefore, the
disaster information should be filtered based on the specific purposes of the users
[97]. Especially, in emergency management, the utilization of social media data be
extended for various tasks such as warning [41], detection & tracking [52,45], situ-
ational awareness [91,58], assessment [76,84], etc. Therefore, it is more emphasized
that the data extraction and filtering became the core of emergency management
together with effects of social media data. However, the social media data contain
texts, images, videos, tags, and so on. Therefore, information is extracted from
heterogeneous sources such as social media and monitoring devices. Typically, the
disaster information from different sources varies greatly in structure or format. To
support further analysis and processing, a specification of common format should
be required for disaster information integration. Then, the integrated disaster in-
formation in this format can be organized and stored for further processing [97].

3.4 Data Integration

Emergency services sometimes should deal with the massive amount of data arriv-
ing through multiple channels such as existing records, sensors, satellite networks
or social media [108]. Therefore, one of the biggest challenge in emergency manage-
ment is to develop a data integration protocol. Data integration is the process of
combining data residing at different sources and providing the user with a unified
view of these data [109]. This process includes the following tasks: (1) to convert
contents of different formats into a standard format; (2) to verify the credibil-
ity of various crowdsourcing data sources and attempt to leverage it to produce
useful information for disaster decision-making; (3) to map images or texts with
their corresponding geolocations to better capture the current situation; and (4)
to process and analyze the data from different sources [97].

3.5 Applications for Data Analysis in Emergency

In this section, we introduce several applications and platforms comprehensively
deal with data analysis for emergency managements. Ushahidi as the first large-
scale crowdsourcing system developed to report Kenyan post-election violence in
2008 and since then has been applied into many major disasters such as Hur-
ricane Sandy and Haiti Earthquake [110]. Ushahidi is an open source and free
systems which can either be deployed on external servers or on it’s hosting sys-
tem CrowdMap. This system collects emergency-related data from several sources,
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web, Twitter, RSS feeds, emails, SMS, and so on. Collected data is then visual-
ized on the map. Last, Ushahidi allows users to filter information based on several
types (e.g. supplies or shelter).
Artificial Intelligence for Disaster Response (AIDR) is a free software
platform which can be either run as a web application or created [111]. In AIDR,
tweets are collected according to pre-selected set of keywords. Prior labeled tweets
will be used as the training set of a classifier which labels collected tweets based
on the keywords. In the training process, n-grams of tweets are used as features
and therefore the classifier is retrained for every new category and disaster.
TweetTracker consists of tracking, analyzing, and understanding tweets related
to a specific topic [112]. In the process of tracking the status of and event, data
includes keywords, location, and users can be collected using a set of criteria from
Twitter, Facebook, YouTube, VK, and Instagram. Fluctuations in the total num-
ber of post or frequency of posts with specific words can be analyzed for different
time periods. Moreover, keywords, hashtags, links, images, and videos with their
frequencies are available to understand tweets by the user. For instance, to better
understand the geographic distribution of posts, geo-tagged tweets are presented
on a map.
DisasterMapper is a CyberGIS framework to ingest and archive massive amounts
of social media data [113]. In this framework, to manage massive social media data,
Apache Hive is used as the scalable storage solution. Furthermore, Hadoop plat-
form is used as a scalable distributed computing environment to process social
media data. Mahout is leveraged to support big data analytics. It can can auto-
matically synthesize multi-sourced data, such as social media and socioeconomic
data, to track disaster events, to produce maps, and to perform spatial and sta-
tistical analysis for emergency management.
IDDSS-Sensor is GIS-based software implemented to provide the functions of
standard-based access, as well as on-the-fly harmonization, integration and usage
of multi-agency sensor information [114]. The software has three layers, namely,
the storage, service, and presentation layer. In storage layer, PostgreSQL is used
as an open-source object relational database of integration data models. For ser-
vice layer, 520North and GeoServer was employed as SOS implementation and as
spatial data service for serving static spatial data. As GUI of the system, third
layer was developed by JavaScript, and the CESIUM, ExtJS3 and IDDSS were
uased for displaying the sensor data and visual indicators.

4 Challenges and Opportunities of machine learning in Emergency

Here, we summarize and look over approaches aforementioned to draw challenges
and opportunities of machine learning techniques in emergency management. Ta-
ble 1 lists approaches and applications in emergency management in terms of
target types of emergency, belonged tasks, used technique of machine learning,
and data analysis.

This section focuses on issues for machine learning techniques for overall tasks
in emergency management. Crowdsourcing with machine learning will be discussed
in section 5.
Information and Knowledge Learning. For this category, the following chal-
lenges are raised as further research issues: (1) Support sustainable annotation and
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Table 1 Approaches with Machine Learning for emergency management

Title Emergency Task Machine learning tech-
nique

Data Source Data analysis

Prediction of Earthquake Magnitude by an
Improved ABC-MLP [17]

Earthquake Prediction Artificial Bee Colony,
Multilayer Perceptron,
Backpropagation

Earthquake parameter
magnitude

California earthquake data (2011)a – Labeling

Artificial neural networks for earthquake
prediction using time series magnitude data
or Seismic Electric Signals [18]

Earthquake Prediction Artificial Neural Net-
work

time series magnitude
data, Seismic electric
signals

Seismological Institute National Observatory
of Athens (SINOA), VAN team in Greece
Athens earthquake data (1981)

– Labeling

A time-dependent surrogate model for storm
surge prediction based on an artificial neural
network using high-fidelity synthetic hurri-
cane modeling [19]

Hurricane Prediction Artificial Neural Net-
work, Backpropaga-
tion

Historical hurricane
parameters

Atlantic hurricane database, HURDAT2b – Labeling

Neural Networks to Predict Earthquakes in
Chile [20]

Earthquake Prediction Artificial Neural Net-
work

Earthquake of magni-
tude equal or larger to
3.0

Chile’s National Seismological Service – Labeling

Predicting Monsoon Floods in Rivers Embed-
ding Wavelet Transform, Genetic Algorithm
and Neural Network [21]

Flood Prediction Artificial Neural Net-
work, Genetic Algo-
rithm

Flow data Monsoon flow (2001-07) – Labeling

Track-pattern-based model for seasonal pre-
diction of tropical cyclone activity in the
western North Pacific [22]

Tropical
cyclone

Prediction Fuzzy C-Means Clus-
tering

Tropical cyclone loca-
tions with maximum
sustained wind speed
greater than 17 ms21

Regional Specialized Meteorological Centers
Tokyo-Typhoon Center

– Labeling

The Application of Ant-Colony Clustering
Algorithm to Earthquake Prediction [26]

Earthquake Prediction Ant Colony Clustering
Algorithm

Earthquake magnitude – Labeling
– Anomaly detection

Dynamic and robust wildfire risk prediction
system: an unsupervised approach [24]

Wildfire Prediction Clustering techniques Weather data Fire & Rescue NSW from the Bureau of Me-
teorology (BoM)

– Labeling
– Anomaly detection

The data mining technology of particle
swarm optimization algorithm in earthquake
prediction [25]

Earthquake Prediction Particle Swarm Op-
timization Clustering
Algorithm

Earthquake magni-
tude, earthquake pre-
cursor data

– Labeling
– Anomaly detection

Spatial prediction of flood susceptible areas
using rule based decision tree and a novel en-
semble bivariate and multivariate statistical
models in GIS [32]

Flood Prediction Rule-based Decision
Tree, Frequency Ra-
tio and Logistic Re-
gression Statistical
Methods

Rainfall data, spatial
database

Landslide-hazard map [115] – Labeling
– Anomaly detection
– Mapping and flood suscep-

tibility

GIS-based landslide susceptibility modelling:
a comparative assessment of kernel logistic
regression, Näıve-Bayes tree, and alternating
decision tree models [33]

Landslide Prediction Kernal Logistic Re-
gression, Naive Bayes
Tree, Alternating De-
cision Tree

Landslide inventory
map, Landslide condi-
tioning factors, Land-
sat 8 OLI images,
precipitation data

Self-collection, NASAc, U.S Geological Sur-
vey (USGS)d

– Collecting landslide inven-
tory map

– Labeling
– To manually ingrate early

reports, aerial phtographs,
GPSs

a http://www.data.scec.org/
b http://www.nhc.noaa.gov/data/#hurdat
c http://reverb.echo.nasa.gov/reverb/
d http://landsat.usgs.gov/landsat8.php, http://www.sxmb.gov.cn/index.php
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Table 1 continued

Title Emergency Task Machine learning tech-
nique

Data Source Data analysis

Clustering technique to interpret Numeri-
cal Weather Prediction output products for
forecast of Cloudburst [23]

Cloudburst Prediction K-Means Clustering Flow pattern data
(temperature accord-
ing to atmospheric
pressure level)

European Center for Medium-range Weather
Forecasting

– Labeling

Application of decision trees to the analysis
of soil radon data for earthquake prediction
[27]

Earthquake Prediction Decision Tree Soil radon data Soil radon data [116] – Labeling

A new data mining model for hurricane in-
tensity prediction [28]

Hurricane Prediction Feature Weight Learn-
ing, Genetic Algo-
rithm, Extensible
Markov Model

Historical hurricane
data

Atlantic tropical cyclones (1982-2003) Na-
tional Center for Atmospheric Research
NCAR

– Labeling

Computational Intelligence Techniques for
Predicting Earthquakes [29]

Earthquake Prediction Association Rules,
Decision Tree

Location and magni-
tude of Spanish earth-
quakes

Spanishs Geographical Institute (SGI) – Labeling

Novel method for hurricane trajectory predic-
tion based on data mining [30]

Hurricane Prediction Association Rules Hurricanes motion
characteristics

Atlantic weather Hurricane/Tropical Data
from 1900 to 2008a

– Labeling

Spatial Data Mining for Prediction of natural
events and emergency management based on
fuzzy logic using hybrid PSO [31]

Natural
emergency

Prediction Fuzzy Logic, Particle
Swarm Optimization,
K-Meas Clustering,
Naive bayes classifier

Water level modifi-
cations data, spatial-
temporal data, text
data

Bangladesh Country Almanac (BCA) data
set

– Labeling and centroid de-
tection

– Filtering inconsistent and
unnecessary data

– Integrating spatial data and
text

Evaluation of the satellite-based Global
Flood Detection System for measuring river
discharge: influence of local factors [37]

Flood Warning
Detection
& Tracking,
Evaluation

Random Forest – Satellite-derived
data (surface water
extent and flood-
plains)

– River width
– Presence of flood-

plains flooded forest
and wetlands

– Flood extent
– Land cover
– Leaf area index
– Climatic areas
– Presence of river ice
– Dam location

– Global Flood Detection System, Global
Runoff Data Centre, and South African
Water Affairsb (1998 to 2010),

– SRTM Water Body Database and the Hy-
droSHEDS [117]

– Global Lakes and Wetlands Database level
3 [118]

– Global Flood Hazard Map [119]
– Global Land Cover 2009 [120]
– SPOT-VGTc

– Koppen-Geiger climate map of the world
[121]

– Circum-Arctic map [122]
– Global Reservoir and Dam [123]

– Labeling
– Integrating data related to

flood

The evaluation of city emergency manage-
ment system results based on BP neural net-
work [74]

Natural
emergency

Evaluation Backpropagation Neu-
ral Network

Results evaluation
of City emergency
management system

– Survey evaluation data
– Labeling

a http://weather.unisys.com/hurricane/
b http://www.dwa.gov.za/
c http://wdc.dlr.de/
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Table 1 continued

Title Emergency Task Machine learning tech-
nique

Data Source Data analysis

Use of wireless sensor networks for dis-
tributed event detection in emergency man-
agement applications[36]

Fire Warning Decision Tree Residential fire data
(temperature, ioniza-
tion, photoelectric,
and CO)

NISTa – Labeling

MyShake: A smartphone seismic network for
earthquake early warning and beyond [34]

Earthquake Warning Artificial Neural Net-
work

Acceleration data
from android phone,
GPS

Self-collection, Northern and Southern Cali-
fornia Earthquake Data Centersb, the Center
for Engineering Strong Motion Data, and the
National Research Institute for Earth Science
and Disaster Prevention for Japanese

– Collecting smartphone sen-
sor

– Labeling
– Filtering frequency band
– Integrating locations and

acceleration according to
time-stamps

Monitoring of long-term static deformation
data of Fei-Tsui arch dam using artificial
neural network-based approaches [38]

Flood Warning Artificial Neural Net-
work (the static neural
network, the dynamic
neural network, and
the auto-associate net-
work)

Residual deformation
in Fei-Tsui arch dam
(the static deforma-
tion, the water level,
and temperature dis-
tribution)

– Collecting the static defor-
mation, the water level, and
temperature distribution

– Labeling

Flood early warning system: design, imple-
mentation and computational modules [39]
Flood early warning system: sensors and in-
ternet [40]

Flood Warning K-Means Clustering – streams of sensor
data

– digital terrain model
data

Actueel Hoogtebestand Nederlandc – Collecting real time sensor
data

– Labeling and anomaly de-
tection

– Integrating mapping and
sensor data

Earthquake emergency management by social
sensing [41]

Earthquake Warning,
Evaluation

Bayesian statistics,
Peak-detection al-
gorithms, Corrected
conditional entropy,
classification tech-
niques

Social media data
with keywords, multi-
medial context such as
videos and photos

Using Streaming API of Twitter – Collecting social media data
– Labeling
– Removing noise of different

meaning and past event

Earthquake management: a decision support
system based on natural language processing
[42]

Earthquake Warning Bayesian Model Aver-
aging, Voting mech-
anism, Classifiers
(decision tree, sup-
port vector machine,
naive bayes, logistic
regression, and K-near
neighbors

Social media data
with keywords, K

Using Streaming API of Twitter – Collecting social media data
– Labeling

a http://smokealarm.nist.gov/
b www.NCEDC.org, www.SCEDC.org
c http://www.ahn.nl/
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Table 1 continued

Title Emergency Task Machine learning tech-
nique

Data Source Data analysis

Development of ERESS in panic-type dis-
asters: Disaster recognition algorithm by
buffering-SVM [43]
Disaster detection by statistics and SVM for
emergency rescue evacuation support system
[44]

Natural
emergerncy

Detection &
Tracking

Support Vector Ma-
chine

Sensor data from mo-
bile

– Collecting sensor data from
mobile

– Feature extraction and la-
beling

Social media for crisis management: cluster-
ing approaches for sub-event detection [45]

Emergency Detection &
Tracking

Self-Organizing Map
and Agglomerative
Clustering

Social multimedia
data (images and
videos) - 2011 Mis-
sissippi Flood, Oslo
Bombing, UK Riots,
and Hurricane Irene

Using APIs of Flicker and Youtubea - Collecting social media data
– Labeling
– Integrating spatial-temporal

data, images, and videos

Classifying text messages for the Haiti earth-
quake [51]

Earthquake Detection &
Tracking

Support vector ma-
chine, BoWs ap-
proach, feature ab-
straction, feature se-
lection, and Latent
Dirichlet Allocation

Text messages in
phone, e-mail, Twit-
ter, or web about the
Haiti earthquake

Ushahidi-Haitib – Labeling
– Feature selection to remove

irrelevant and redundant
feature

Prediction of human emergency behavior and
their mobility following large-scale disaster
[47]

Natural
emergency

Detection &
Tracking

Hidden Markov
Model, Bayesian fil-
tering, Maximum
Entropy Inverse Re-
inforcement Learning

– Human mobility
database (GPS
records) from Aug.
2010 to Jul. 2011

– Disaster intensity
data (seismic scale
and damage level)

– Disaster reporting
data”

”- The Great East Japan Earthquake and
Fukushima nuclear from Japan Government
statistical reports
– government declarations
– Japanese Cabinet Secretariatc and news

reports from mainstream medias in Japan
and all over the world [124]

– Recording GPS of human
– Labeling
– Filtering to improve behav-

ior model efficient
– Mapping and human move-

ments

Constructing a Hidden Markov Model based
earthquake detector: application to induced
seismicity [48]

Earthquake Detection &
Tracking

Hidden Markov Model – Geothermal data
set of one short
period station
(DHFO, Mark-
L4) for geothermal
reservoir monitoring

– Speech recordings of
one broadband sta-
tion (KLT, Streck-
eisen STS-2) for
Volcano monitoring

– Geothermal plant in the municipality of
Unterhaching in Germany (2008-2010)

– Mt. Merapi volcano 1998

– Labeling
– Filtering noise on sound

recording

a http://flickrj.sourceforge.net/, https://developers.google.com/gdata/
b http://haiti.ushahidi.com
c http://www.cas.go.jp/
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Table 1 continued

Title Emergency Task Machine learning tech-
nique

Data Source Data analysis

Leveraging cross-media analytics to detect
events and mine opinions for emergency man-
agement [46]

Natural
emergency

Detection &
Tracking

Clustering techniques Microblog data of an
emergency event

– Crawling microblog data
such as online news and
forums by Python

– Extracting relevance key-
words

– Filtering document by neg-
ative sentiment analysis

– Integrating cross-media
data

Audio Data Mining for Anthropogenic Disas-
ter Identification: An Automatic Taxonomy
Approach [49]

Man-made
Emergency

Detection &
Tracking

K-Means dictionary
learning, Clustering
technique based on
hierarchical regular-
ized logistic regression
model

Audio clips of emer-
gency event from four
channel

– BBC Sound Effects Library
– Urban-Sound8K datasets [125]
– Sound Classification [126]
– Sound effects from internet sourcesa

– Labeling

Event classification and location prediction
from tweets during disasters [50]

Emergerncy Detection &
Tracking

Markov Chain tech-
nique, Support vector
machine, gradient
boosting, and random
forest

Social media data
with Geo-tagging ac-
cording to keywords

Using Streaming API of Twitter and Tweepy
python library (Nov.-Dec. 2015 and Jul.Aug.
2016)

– Collecting social media data
– Labeling
– Filtering noise and redun-

dancy

Earthquake shakes Twitter users: real-time
event detection by social sensors [52]
Tweet analysis for real-time event detection
and earthquake reporting system develop-
ment [53]

Earthquake Prediction,
Warning,
Detection &
Tracking

Support vector ma-
chine, Kalman filtering
and particle filtering

Tweets, GPS and reg-
istered location of
user,

Using Streaming API of Twitter – Collecting social media data
– Labeling
– Mapping emergency event

and tweets

Image4Act: Online Social Media Image Pro-
cessing for Disaster Response [56]

Natural
emergency

Situational
awareness,
Crowd-
sourcing

Convolutional Neural
Networks, Perceptual
Hashing

Images on social me-
dia data with Geo-
tagging according to
keywords

Using Streaming API of Twitter – Collecting social media data
– Labeling
– Filtering irrelevant and

duplicate images

Automatic Image Filtering on Social Net-
works Using Deep Learning and Perceptual
Hashing During Crises [57]

Natural
emergency

Evaluation Convolutional Neural
Networks, Perceptual
Hashing

Images from Twitter Typhoon Ruby (2014), Nepal Earthquake
(2015), Ecuador Earthquake (2016), and Hur-
ricane Matthew (2016) by AIDR platform
[127]

– Collecting social media data
– Labeling
– Filtering de-duplication and

relevancy

Processing Social Media Images by Combin-
ing Human and Machine Computing during
Crises [58]

Natural
emergency

Evaluation Convolutional Neural
Networks, Percep-
tual Hashing, transfer
learning

Images from Twitter,
Flickr, or Instagram
and so on.

Typhoon Ruby (2014), Nepal Earthquake
(2015), Ecuador Earthquake (2016), and Hur-
ricane Matthew (2016) using Streaming API
of Twitter

– Collecting social media data
– Labeling
– Filtering de-duplication and

relevancy
– Integrating cross-social me-

dia data

Social Media: New Perspectives to Improve
Remote Sensing for Emergency Response [59]

Natural
emergency

Situational
awareness

Convolutional Neural
Network

Social media data
with specific keywords
(in Chinese)

Using Sina Weibo open platform API
Weibo data from Jun. 2016 to Jul. 2016
(Wuhan) and May 2014 to May 2014 (Shen-
zhen)

– Collecting social media data
– Labeling

a http://sound.natix.org/
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Table 1 continued

Title Emergency Task Machine learning tech-
nique

Data Source Data analysis

Disaster response aided by tweet classifica-
tion with a domain adaptation approach [62]

Natural
emergency

Situational
awareness

Naive Bayes classifier,
iterative self-training
strategy

Social media data
with hashtags

– disaster dataset (CrisisLexT6) of tweets
[128]

– Labeling

Using social media to enhance emergency
situation awareness [65]

Natural
emergerncy

Situational
awareness

Incremental clustering
algorithm

Social media data
from Twitter

Using Streaming API of Twitter (2010) – Collecting social media data
– Labeling
– Filtering stop words

A machine learning framework for assessing
post-earthquake structural safety [77]

Earthquake Evaluation Regression Tree, Ran-
dom Forest

– Response patterns
or distribution of
engineering demand
parameters

– Nonlinear response history analysis – Labeling

Information retrieval of a disaster event from
cross-platform social media [60]

Natural
emergency

Situational
awareness

Support vector ma-
chine

Social media data
with hashtags

– Collecting hashtags using Streaming API
of Twitter

– English language disaster datasets [127–
129]

– Collecting social media data
– Labeling
– Filtering noise
– Integrating cross-social me-

dia data

Mining crisis information: A strategic ap-
proach for detection of people at risk through
social media analysis [61]

Natural
emergerncy

Situational
awareness

Support vector ma-
chine

Social media data
contained hashtags
and geo-tags

– Using Streaming API of Twitter
– Followthehashtag a

– test dataset [129]

– Collecting social media data
– Labeling

Twitter as a Lifeline: Human-annotated
Twitter Corpora for NLP of Crisis-related
Messages [64]

Natural
emergency

Situational
awareness

Naive Bayes, Support
Vector Machine, Ran-
dom Forest

Social media data
from Twitter

19 different crises using Streaming API of
Twitter (2013-2015)

– Collecting social media data
– Labeling
– Filtering stop words, URLs,

and user-mentions

How social media can contribute during dis-
aster events? Case study of Chennai floods
2015 [66,67]

Natural
emergency

Situational
awareness

Semi-Supervised Clas-
sification

Social media data
contained hashtags
and geo-tags with
specific keywords
Web Map service and
load satellite data

Using Streaming API of Twitter (2015) – Collecting social media data
– Labeling
– Mapping and tweet data

Argus: Smartphone-enabled human cooper-
ation via multi-agent reinforcement learning
for disaster situational awareness [68]

Natural
emergency

Situational
awareness

Multi-Agent Rein-
forcement Learning
(modified version of
distributed Q-learning
[130])

multimedia data (au-
dio and video)

Using a mobile application implemented by
them-self

– Collecting audio and video
from user smartphone

– Labeling
– Generating 3D map

Satellite imagery analysis for operational
damage assessment in Emergency situations
[69]

Natural
emergency

Evaluation Convolutional Neural
Network

Two aerospace images
for before and after of
emergency

two areas of Ventura and Santa Rosa coun-
ties, California, USA, 2017 from Digital-globe
within Open Data Programb

– Labeling
– Mapping and emergency

damage

A framework of rapid regional tsunami dam-
age recognition from post-event TerraSAR-X
imagery using deep neural networks [70]

Tsunami Evaluation Convolutional Neural
Network

TerraSAR-X data
(high-resolution syn-
thetic aperture radar)

the Pacific coast of the Miyagi prefecture,
Japan on March 12, 2011 from the Pasco
Corporation

– Collecting acquiring in the
StripMap mode with HH
polarization

– Labeling
– Mapping and emergency

damage

a http://www.followthehashtag.com/features/Twitter-historical-data-recover/
b https://www.digitalglobe.com/opendata
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Table 1 continued

Title Emergency Task Machine learning tech-
nique

Data Source Data analysis

Post earthquake disaster awareness to emer-
gency task force using crowdsourced data [94]

Earthquake Situational
awareness,
Crowd-
sourcing

K-Means Clustering Social media data
with spatial and tem-
poral information

Using Streaming API of Twitter – Collecting social media data
– Labeling
– Mapping and disaster-hit

area

Damage assessment from social media im-
agery data during disasters [72]

Natural
emergency

Evaluation Convolutional Neural
Network

– Disaster-specific
image data with
specific hashtags
and keywords from
social media

– Google image data
with specific queries
related to damage

– AIDR [95] Typhoon Ruby/Hagupit 2014,
Nepal Earthquake 2015, Ecuador Earth-
quake 2016, and Hurricane Matthew 2016

– Google search

– Collecting images from web
and social media

– Labeling”

Nazr-CNN: Fine-Grained Classification of
UAV Imagery for Damage Assessment [73]

Natural
emergency

Evaluation Nazr-Convolutional
Neural Network

Unmanned Aerial Ve-
hicles (UAV) imagery

Cyclone Pam in Vanuatu in 2015 by collabo-
ration with the Humanitarian UAV Network
(UAViators)

– Collecting unmanned aerial
vehicles imagery

– Labeling
– Mapping and emergency

damage

Using Twitter for tasking remote-sensing
data collection and damage assessment: 2013
Boulder flood case study [75]

Natural
emergency

Evaluation Decision Tree Social media data in
Twitter
Unmanned Aerial Ve-
hicles imagery

September 2013 by using Streaming API of
Twitter and Falcon UAV

– Collecting unmanned aerial
vehicles imagery and tweets

– Labeling
– Mapping and emergency

damage”

Application and comparison of decision tree-
based machine learning methods in landside
susceptibility assessment at Pauri Garhwal
Area, Uttarakhand, India [78]

Landslide Evaluation Random Forest, Logis-
tic Model Trees, Best
First Decision Trees
and Classification and
Regression Trees

Landslide and Non-
landslide Data

Interpretation of satellite and Google Earth
images

– Collecting images
– Labeling
– Mapping and emergency

damage

Damage identification and assessment using
image processing on post-disaster satellite
imagery [80]

Natural
emergency

Evaluation Decision Tree, Naive
Bayes, Support Vec-
tor Machine, Random
Forest, Voting Classi-
fier, Adaptive Booster

Aerial images Using GeoEye1 after the 2011 Christchurch
earthquake and 2011 Japan earthquake and
tsunami

– Collecting images
– Labeling
– Filtering noise
– Mapping and emergency

damage

A New Neuro-Fuzzy Approach for Post-
earthquake Road Damage Assessment Using
GA and SVM Classification from QuickBird
Satellite Images [83]

Earthquake Evaluation Neurofuzzy Inference,
Support vector ma-
chine, Genetic algo-
rithm

QuickBrid (high-
resolution satellite
images)

Bam in Iran (Dec. 2003) – Collecting images
– Labeling
– mapping and road damage

Combining machine-learning topic models
and spatio-temporal analysis of social me-
dia data for disaster footprint and damage
assessment [84]

Earthquake Evaluation Latent Dirichlet Allo-
cation

Social media data
footprint of earth-
quake (Experiment)

Napa earthquake on Aug. 2014 using Stream-
ing API of Twitter
Official earthquake footprint by USGS

– Collecting social media data
for specific time and place

– Labeling
– Filtering stop words,

Unique words, stemming,
etc.

– Mapping and emergency
damage
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Table 1 continued

Title Emergency Task Machine learning tech-
nique

Data Source Data analysis

Emergency-relief coordination on social me-
dia: Automatically matching resource re-
quests and offers [92]

Natural
emergency

Crowd-
sourcing

Random Forest, Naive
Bayes Multinomial

Social media data
with keywords and
hashtags

Using Streaming API of Twitter – Collecting social media data
for specific time and place

– Labeling

Finding requests in social media for disaster
relief [91]

Natural
emergency

Crowd-
sourcing

Latent Dirichlet Allo-
cation, Decision Tree

Social media data
Request data (Experi-
ment)

Using Streaming API of Twitter
request data [92]

– Collecting social media data
for specific time and place

– Labeling
– Removing duplicate tweets,

re-tweets, etc
– Mapping and request tweets

A Weibo-based approach to disaster infor-
matics: incidents monitor in post-disaster
situation via Weibo text negative sentiment
analysis [93]

Natural
emergency

Crowd-
sourcing

Random Forest, Naive
Bayes, Support Vector
Machine, K-Nearest
Neighbor

Social media data Using Sina Weibo open platform API Yushu
earthquake dataset (3442 messages), Bei-
jing rainstorm dataset (2517 messages), and
Yuyao flooding dataset (3928 messages)

– Collecting social media data
– Labeling
– Filtering messages of posi-

tive and neutral emotion

Ushahidi, or testimony: Web 2.0 tools for
crowd-sourcing crisis information [110]

Natural
emergency

Warning,
Tracking,
Crowd-
sourcing

Various techniques Web, Twitter, RSS
feeds, emails, SMS,
etc.

Using Streaming API of Twitter – Collecting social media data
– Labeling
– Filtering noise
– Mapping and emergency

tweets

TweetTracker: An Analysis Tool for Humani-
tarian and Disaster Relief [112]

Natural
emergency

Tracking,
Situational
awareness,
Crowd-
sourcing

Various techniques Various social data Twitter, Facebook, YouTube, VK, and Insta-
gram

– Collecting social media data
– Labeling
– Filtering noise
– Mapping and emergency

information

DisasterMapper: A CyberGIS framework for
emergency management using social media
data [113]

Natural
emergency

Crowd-
sourcing

Various techniques
(Mahout)

Social media data Using crawler based on Twitter4ja – Collecting social media data
– Labeling
– Mapping and emergency

tweets

Identifying valuable information from twitter
during natural disasters [131]

Natural
emergency

Situational
awareness,
Crowd-
sourcing

Naive Bayes classifiers Social media data Using Streaming API of Twitter – Collecting social media data
– Labeling
– Removing unnecessary data

such as URLs, slang, etc.

Data mining Twitter during the UK floods:
Investigating the potential use of social me-
dia in emergency management [132]

Flood Situational
awareness,
Crowd-
sourcing

Naive Bayes classifiers Social media data Using Streaming API of Twitter (Nov. 2015
to Jan. 2016)

– Collecting social media data
– Labeling
– Filtering noise

Crowdsourcing Incident Information for Dis-
aster Response Using Twitter [133]

Natural
emergency

Crowd-
sourcing

Naive Bayes classi-
fiers, Support Vector
Machine

Social media data
with specific keywords

Twitter dataset of Hurricane Sandy (Oct.
2012 to Nov. 2012) [134]

– Labeling
– Mapping and emergency

damage

#ChennaiFloods: Leveraging Human and
Machine Learning for Crisis Mapping during
Disasters Using Social Media [135]

Flood Crowd-
sourcing

Smooth Support Vec-
tor Machine

Social media data
with specific hashtags

With hashtage ‘#ChennaiFloods’ using
Streaming API of Twitter

– Collecting social media data
– Labeling
– Filtering stop words, stem-

ming, etc
– Mapping and emergency

tweets

a http://twitter4j.org/en/index.html
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classification on heterogeneous, streaming data from the multisource. To achieve
this, effective and efficient learning algorithms must be studied considering the
context of the emergency and the stakeholders belong to each tasks. (2) Facilitate
real-time analysis and discover information across multiple streams through de-
veloping high-speed and flexible techniques. (3) Construct customized information
extraction methods that can learn by the integration between domain experts and
existing system.
Integration with Geographic Information System (GIS). GISs supports to
integrate, store, share, and display geographically referenced information. Users
(e.g., stakeholders or decision maker) can understand overall situations and dis-
cover insight through GIS for emergency. In this regard, integration between a GIS
and other components is an important research. There are worth further investi-
gation as follows: (1) automate or crowdsource the linkage construction between
information/data and geo-map in real-time. For achieve this, as a prior work, au-
tomatic location extraction techniques from disaster data obtained or collected are
essential for the real-time processing. (2) Intelligent alerts and location broadcast-
ing when people enter a dangerous area. In this case, sensor-based or vision-based
approaches can be integrated as the anomaly detection techniques.
Emergency Data Analysis. As aforemetioned, data in emergency are in gen-
eral generated from various sources and are heterogeneous in nature. Therefore,
effective and efficient methods for data analysis in emergency management should
consider discovering the inter-dependencies of data and extracting useful informa-
tion and knowledge. Additionally, it is also essential to handle rapid increasing
amount of data, since disaster data are generated by many of producers and cus-
tomers. An additional challenge is to integrate data with great diversity which
may be cased from heterogeneous sources with different levels of redundancy, ac-
curacy, and uncertainty or may be due to different characteristics of data (e.g.,
structured/unstructured, real-time streams/static data). In this regards, some in-
teresting research directions include: (1) a unified method for each specific algo-
rithms to collect, extract, filter for heterogeneous, multisource disaster data; and
(2) building an analysis method capable of real-time processing.

5 Crowdsourcing in Emergency Management

In this section, combination crowdsourcing and machine learning for various tasks
in emergencies are reviewed, and challenges and opportunities are raised in terms
of data analysis. Last we more deeply contemplate, with several examples (tweets
in Twitter) for challenges and opportunities discussed.

Volunteering is part of how community reacts to emergencies [136] and this
process has been facilitated by social media in recent years. Volunteers provide in-
formation and resources to the affected people [13]. In this regard, for some years
now, both researchers and practitioners, in the field of emergency management,
have been exploring crowdsourcing for collecting, processing, and sharing infor-
mation between stakeholders. Jeff Howe in 2006 fir sly defined the term as “the
act of taking a job traditionally performed by a designated agent and outsourc-
ing it to an generally large group of people in the form of an open call [137]”.
Since Howes definition, an extended range of crowdsourcing researches have been
carried out from a number of fields such as computer sciences, management, in-
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formation systems and so on. Additionally, as a problem-solving method [138]
crowdsourcing has also caught the attention of emerging paradigms such as col-
lective intelligence, human computation, or social computing [86]. With respect to
this, Liu has analysed the distinct skills and expertise of different crowds typically
involved in emergency management: (1) affected-populations, (2) social medias,
and (3) digital volunteer communities [139]. In this framework, affected popula-
tions generate local, timely, and direct experiential information, and social media
make available unexpected and fortuitous experience. Last, digital volunteers offer
their capabilities for processing and managing emergency data. Also, Poblet et al.
introduced four different crowd’s roles such as sensors, social computers, reporters,
and microtaskers. It considered four data types (i.e., raw data, unstructured data,
semi-structured data, and structured data) and two involvement types (i.e., active
or passive) [86]. There have been recently efforts toward crowdsourcing such tasks
in emergency management but it is still challenging. Social media posts come at a
fast pace and immense volume. Moreover, it is challenging to collect all the posts
which are related to a disaster due to the restrictions by social media services.
The collected data contains daily information and is only in part insightful infor-
mation. Another issue is malicious content such as spam and rumors which can
cause panic and stress, especially when produced in large scale using bots [13].
In this regard, one of another area to potentially improvement these challenges
is for machine learning methods which have been applied to a variety of tasks in
emergency management as mentioned in section 2.

5.1 Crowdsourcing with Machine Learning for emergency management

Here, combination crowdsourcing with machine learning for various tasks in emer-
gencies are reviewed, with exception of approaches for relief task, since the ap-
proaches are already reviewed in section 2.7.

Pandey and Natarajan proposed a prototype solution to provide situation
awareness during and post the time of a disaster event using semi-supervised
machine learning technique based on SVM and creating interactive open street
maps for crowdsourcing the user data providing threat and relief information [66].
Their model was evaluated with the data from Chennai flood 2015. Truong et al.
developed a Bayesian approach to the classification of tweets during Hurricane
Sandy in order to distinguish “informational” from “conversational” tweets [131].
They designed an effective set of features and used them as input to NB classi-
fiers. The NB classifier was also introduced to reduce noise in crowdsourced data
related to emergency management [132]. Their approach was assessed with the
flood data of Cumbria 2015. As similarily, Imran et al. proposed automatic meth-
ods based on NB classifier for extracting information from microblog posts. They
also focused on extracting valuable “information nuggets” relevant to disaster re-
sponse [140]. Kurkcu et al. likewise used NB classifier with TF-IDF to identify
keywords from tweets related to emergency [133]. Experimental result indicated
that crowdsourced data refined could provide detailed location information of a
specific incident along with its intensity, duration and. Anbalagan and Valliyammai
proposed a system performs disaster tweet collection based on trending disaster
hash tags [135]. They compared Naive-Bayesian and Smooth Support Vector Ma-
chine (SSVM) classifications on collected tweets to identify the severity of the
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emergency. As a results, SSVM outperformed Naive-Bayesian. Also, emergency
geographic map was generated for the affected area through location to interpo-
lation cluster proximity. Balena et al. evaluated supervised classification methods
(AdaBoost, NB, RF, SVM, and Neural Networks) to compare their effectiveness
and potential for classifying message requests asking for/offering to help in emer-
gency [141]. As a results, the RF and the Neural Network had better performance
than the others. Nagy et al. introduced a evaluation of approaches to accurately
and precisely identify crowd sentiment in social media data (Tweets) in emergency
situation [142]. SVM was used to classify the lexicons linked to the seed. Their
technique performed better than Bayesian Networks alone, and the combination
with Bayesian networks improved the sentiment detection.

5.2 Challenges with data analysis aspects

5.2.1 Data collection

Scalability issues. Large crises often generate an explosion of social media
activity. In case of Twitter, although each message contains 140 characters, is
around 4KB by considering the metadata. Furthermore, the significant amount
of storage space may be required by attached multimedia objects such as images
and videos. Data velocity is a more challenging issue, especially with considering
frequent occuring drastic variations. The largest peak of tweets during a natural
hazard was measured as 16,000 tweets per minute 1. Finally, redundancy is in
general cited as a scalability challenge. Repeated (e.g., retweets) messages are
common in time-sensitive social media, even un-trusted tweet such as rumors and
spam might gain more concern due to simply repeating more.
Content issues. Even although microtexts are brief and informal, to analysis
this type of text is difficult work due to complexity with technological, cross-lingual
and cross-cultural factors. This causes severe challenges to computational methods
and can lead to poor and misleading results. Additionally, the texts are also highly
heterogeneous with multiple sources and varying levels of quality. Quality itself is
important question, encompassing many attributes including objectivity, clarity,
timeliness, conciseness, and so on.

5.2.2 Information extraction

Inadequate spatial information. As spatial and temporal information, are
two components of an event, most systems encounter challenges to determine ge-
ographical information of social media that lack GPS information. In this case,
additional information (e.g., geo-tag and locations in user profile) can be used.
Combining manual and automatic annotation. In a supervised learning set-
ting, data labeled through manual works is necessary to training a model, but it
may be costly to obtain. This is particularly problematic in emergency that attract
concerns of a multilingual population, or for tasks that require domain knowledge,
related to affected region or characteristics of emergency events. Also, labeled data

1 During Hurricane Sandy in 2012: http://www.cbsnews.com/news/social-media-a-news-
source-and-toolduring- superstorm-sandy/.
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are not always reliable and may not be available at the time of the emergency. In
this case, a hybrid approach that combines human and automatic annotation can
be used. An active learning with the selection of items to be labeled by humans
can be applied to improve classification accuracy as new labels are received. When
at the time Optimal budget allocation and active learning in crowdsourcing.

5.2.3 Data filtering

Mundane events. People post specific events as well as daily life on social media
sites. These data as noise, which creates more challenges for an event detection
methods to overcome, should be separated of real-life big events like emergencies.
Rumors, spam, and social bots. Filtering social media data in crowdsourcing
is a necessary process before data usage in any stages of a disaster. The data which
is overwhelmed with unwanted content (e.g., rumors, spam, and content created
by social bots) does not show real opinion of the crowd. To overcome challenge by
rumors, methods have been proposed to automatically detect tweets by using their
specific behaviors such as the difference of diffusion process of rumors and normal
posts, the number of users and the depth related the diffusion, etc. In case of spam,
characteristics of spammers can be used, such as posting numerous messages by one
account and the few numbers of reciprocal connections. For solve the bot issues,
three major methods have been proposed through manual annotation, using the
suspension mechanism of social media sites, or creating lure bots.

5.2.4 Data integration

Describing the events. Creating descriptions or labeling for a detected event
are in general challenge tasks. Although major keywords that are frequently posted
during the event are presented as a description, it does not constitute a grammat-
ically well-formed. In addition, with other useful data such as maps, images, and
video, even this issue will be more complex, but it may be practical and helpful
to understand event on the whole.
Domain adaptation. Simply reusing an existing classifier trained on past data
does not perform well in practice, as it yields a significant loss in accuracy even
when emergencies have a lot of common elements. In machine learning, domain
adaptation is a series of methods adapting it to continue to fulfill well on a dataset
with different characteristics. Furthermore, this techniques may help to integrate
a variety of data from different domain to supplement weaknesses each other. For
instance, briefly, sensor-based approach that provides more detail situation can be
integrated with crowdsourcing-based methods, which support to detect event in
broad area, to more fast and accurate event detection for time-sensitive tasks in
emergency.

From these challenges, several interest topics are able to be raised as opportu-
nities such as:

– Annotation: What is the best way to collect and aggregate labels for unlabeled
data from the crowd? How can we do the annotation in the most cost-efficient
manner? What is the most effective way to collect probabilistic data from
the crowd? How can we collect data requiring global domain knowledge via
crowdsourcing?
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– Time-sensitive and complex tasks: How can we design crowdsourcing systems
to handle (near) real-time or time-sensitive tasks? How can we deal with work
dependencies requiring more complexity?

– Data collection for specific domains: How can ML researchers apply the crowd-
sourcing principles for different domains where privacy and original character-
istics are at play?

– Reliability, efficiency, and scalability of a system: How can we deal with sparse,
noisy and large number of label classes such as tagging images for Deep Learn-
ing based computer vision algorithms? How can we efficiently applied a series of
useful methods (e.g., optimal budget allocation, label aggregation algorithms,
and active learning) into crowdsourcing disciplines?

5.3 Example: Crowdsourcing and Machine Learning for Tracking Emergency

In this section, we more deeply contemplate, with several examples (tweets in
Twitter) for challenges and opportunities discussed in the previous section. Table
2 shows the tweet examples which will be discussed in this section.

Table 2 Tweet examples related to emergency

No Tweet

E1 BIG EARTHQUAKE!!!
E2 Massive quake in Tokyo
E3 #havetoacemysatexam this made me laugh, no idea why but omfg haha

http://bit.ly/S6fbBt
E4 ATTENTION ANYONE LOOKING FOR A JOB: FEMA needs assistance

for South Jersey! $1000.00/per l (904)797-5338!
E5 #Sandy RUMOR CONTROL: The rumor that @fema is offering $300 cash

cards for food is FALSE. http://www.fema.gov/hurricane-sandy-rumor-
control

E6 Lets not forget the people in #NepalEarthquake let us all say a prayer
for the people in Nepal MrAlMubarak

Discovering location of social media data. Geographical coordinate (known
as geotagging) attached in message is useful for a number of tasks in disaster
response [31]. For instance, it allows to search or verify information about a lo-
cal event, by filtering the messages corresponding to a particular affected region;
further geotagging can also be used for higher-level tasks, such as predict transmis-
sion of infectious disease. Unfortunately, only 2% of emergency-related messages
include GPS coordinates in practice, further, large portion of these messages may
be made through the social bot [143]. For example, a place of the tweet E2 is
able to be speculated from it’s content about Tohoku earthquake, while E1 don’t
contain explicit coordinates. In this regard, from users profile, some information
such as a home location (freeform text), preferred language and time zone may be
considered for determining the location of the tweet [53].
Trustworthiness of crowdsourced data. Crowdsourced data reflects opinion
of crowd; which sometimes contains more than the credible data. On the other
hand, within crowdsourcing using social media service, rumor, spam and bots
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can be critical issues as aforementioned. Among the 8 million tweets according
to Boston Marathon Bombing in 2013, around 29% were revealed to be rumors
and 51% to be general opinions and comments [144]. This insight shows the perils
of using keyword or hashtag-based topic definition. Additionally, as an example
of spam (E3), many tweets which generated in areas close to the occurrence of
Hurricane Sandy had been related to promoting the material for Scholastic As-
sessment Test (SAT) together with #HaveToAceMySATExam tag [13]. In case of
E4, it may be also confirmed by other tweets which notice whether or not a rumor
is true like E5. For retrieving the relevant tweets, using the expert knowledge to
compose high-precision queries has been emphasized as one possible solution [145].
Integration between different disciplines. Images and videos in tweets may
open new opportunities to deeply understand situation and event in emergency.
Information source such as website URLs, photos, and videos in tweets related to
emergency has been found to be around 18% [144]. Once images from the photos
and videos are obtained, vision-based analysis can be used to find sources of the
multimedia [146]. E62 is one example related to Nepal earthquake in 2015, and
contains one image for broken apartments. The photo in tweet E6 can be searched
by Google Image Search to link with one Youtube video3 which contain a “Nepal”
as a title.

6 Conclusions

In the contemporary society, various emergencies take place more and more fre-
quently and have threatened to human life, environmental protection, social sta-
bility, and even political relationship of all countries around the world. Machine
learning techniques have been proven to successfully support the decision making
processes in managing many complex problems. In that sense, emergency man-
agement is no exception; however, it presents a variety of challenge to machine
learning techniques for the emergency management.

The purpose of this chapter is to discuss a hybrid crowdsourcing and real-time
machine learning approaches to rapidly process large volumes of data for emer-
gency response in a time-sensitive manner. We separated the emergency stage as
three phases from various definitions of the emergency, and each phase contains two
tasks were applied machine learning techniques. And we then reviewed the appli-
cation and the approach of machine learning techniques to support the emergency
management for the each task, and the challenges and the opportunities were pro-
posed. We described characteristics of data being generated during disaster, and
discussed that the data characteristics akin to 5 Vs of big data. In addition, vari-
ous applications cases of big data analysis were looked over. Moreover, we focused
on crowdsourcing with machine learning in emergency management, and the their
challenges and opportunities were discussed in terms of the data analysis. Finally,
several examples of the tweet related to emergency were discussed to more deeply
contemplate the challenges and opportunities.

2 https://twitter.com/saflaher/status/598247877295644674
3 https://www.youtube.com/watch?v=aNZiLYEr6to
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29. F. Mart́ınez-Álvarez, A.T. Lora, A. Morales-Esteban, J.C. Riquelme, in Hybrid Artificial
Intelligent Systems - 6th International Conference, HAIS 2011, Wroclaw, Poland, May
23-25, 2011, Proceedings, Part II, Lecture Notes in Computer Science, vol. 6679, ed. by
E. Corchado, M. Kurzynski, M. Wozniak (Springer, 2011), Lecture Notes in Computer
Science, vol. 6679, pp. 287–294

30. X. Dong, D. Pi, Natural Hazards and Earth System Sciences 13(12), 3211 (2013)
31. K. Ravikumar, A.R. Kannan, (2018)
32. M.S. Tehrany, B. Pradhan, M.N. Jebur, Journal of Hydrology 504, 69 (2013)
33. W. Chen, X. Xie, J. Peng, J. Wang, Z. Duan, H. Hong, Geomatics, Natural Hazards and

Risk 8(2), 950 (2017)
34. Q. Kong, R.M. Allen, L. Schreier, Y.W. Kwon, Science advances 2(2), e1501055 (2016)
35. M. Bahrepour, N. Meratnia, M. Poel, Z. Taghikhaki, P.J. Havinga, in Proceedings of

the 2nd International Conference on Intelligent Networking and Collaborative Systems
(INCOS) (IEEE, 2010), pp. 507–512

36. M. Bahrepour, N. Meratnia, M. Poel, Z. Taghikhaki, P.J. Havinga, International Journal
of Space-Based and Situated Computing 2(1), 58 (2012)

37. B. Revilla-Romero, J. Thielen, P. Salamon, T.D. Groeve, G. Brakenridge, Hydrology and
Earth System Sciences 18(11), 4467 (2014)

38. C.Y. Kao, C.H. Loh, Structural Control and Health Monitoring 20(3), 282 (2013)
39. V.V. Krzhizhanovskaya, G. Shirshov, N. Melnikova, R.G. Belleman, F. Rusadi,

B. Broekhuijsen, B. Gouldby, J. Lhomme, B. Balis, M. Bubak, et al., Procedia Com-
puter Science 4, 106 (2011)

40. B. Pengel, V. Krzhizhanovskaya, N. Melnikova, G. Shirshov, A. Koelewijn, A. Pyayt,
I. Mokhov, et al., IAHS Red Book 357, 445 (2013)

41. M. Avvenuti, S. Cresci, P.N. Mariantonietta, A. Marchetti, M. Tesconi, in Proceedings
of the 2014 IEEE international conference on Pervasive computing and communications
workshops (PERCOM workshops) (IEEE, 2014), pp. 587–592

42. E. Fersini, E. Messina, F.A. Pozzi, Journal of Ambient Intelligence and Humanized Com-
puting 8(1), 37 (2017)

43. K. Mori, T. Nakamura, J. Fujimura, K. Tsudaka, T. Wada, H. Okada, K. Ohtsuki, in
Proceedings of the 13th International Conference on ITS Telecommunications (ITST)
(IEEE, 2013), pp. 337–343

44. H. Higuchi, J. Fujimura, T. Nakamura, K. Kogo, K. Tsudaka, T. Wada, H. Okada, K. Oht-
suki, in Proceedings of the 43th International Conference on Parallel Processing Work-
shops (ICCPW) (IEEE, 2014), pp. 349–354

45. D. Pohl, A. Bouchachia, H. Hellwagner, Multimedia Tools and Applications 74(11), 3901
(2015)

46. W. Xu, L. Liu, W. Shang, Online Information Review 41(4), 487 (2017)
47. X. Song, Q. Zhang, Y. Sekimoto, R. Shibasaki, in Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and data mining (ACM, 2014), pp. 5–
14

48. M. Beyreuther, C. Hammer, J. Wassermann, M. Ohrnberger, T. Megies, Geophysical
Journal International 189(1), 602 (2012)

49. J. Ye, T. Kobayashi, X. Wang, H. Tsuda, M. Masahiro, IEEE Transactions on Emerging
Topics in Computing (2017)

50. J.P. Singh, Y.K. Dwivedi, N.P. Rana, A. Kumar, K.K. Kapoor, Annals of Operations
Research pp. 1–21 (2017)

51. C. Caragea, N. McNeese, A. Jaiswal, G. Traylor, H.W. Kim, P. Mitra, D. Wu, A.H.
Tapia, L. Giles, B.J. Jansen, et al., in Proceedings of the 8th international conference
on information systems for crisis response and management (ISCRAM2011) (Citeseer,
2011)

52. T. Sakaki, M. Okazaki, Y. Matsuo, in Proceedings of the 19th international conference
on World wide web (ACM, 2010), pp. 851–860

53. T. Sakaki, M. Okazaki, Y. Matsuo, IEEE Transactions on Knowledge and Data Engi-
neering 25(4), 919 (2013)

54. H.N. Teodorescu, Procedia Engineering 107, 325 (2015)
55. S. Vieweg, A.L. Hughes, K. Starbird, L. Palen, in Proceedings of the 28th Interna-

tional Conference on Human Factors in Computing Systems, CHI, ed. by E.D. Mynatt,
D. Schoner, G. Fitzpatrick, S.E. Hudson, W.K. Edwards, T. Rodden (ACM, Atlanta,
Georgia, 2010), pp. 1079–1088



34 Minsung Hong, Rajendra Akerkar

56. F. Alam, M. Imran, F. Ofli, in Proceedings of the 2017 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining 2017 (ACM, 2017), pp.
601–604

57. D.T. Nguyen, F. Alam, F. Ofli, M. Imran, Computing Research Repository
abs/1704.02602 (2017)

58. F. Alam, F. Ofli, M. Imran, International Journal of Human–Computer Interaction 34(4),
311 (2018)

59. J. Li, Z. He, J. Plaza, S. Li, J. Chen, H. Wu, Y. Wang, Y. Liu, Proceedings of the IEEE
105(10), 1900 (2017)

60. S. Shen, N. Murzintcev, C. Song, C. Cheng, Information Discovery and Delivery 45(4),
220 (2017)

61. J.R. Ragini, P.R. Anand, V. Bhaskar, International Journal of Disaster Risk Reduction
27, 556 (2018)

62. H. Li, D. Caragea, C. Caragea, N. Herndon, Journal of Contingencies and Crisis Man-
agement 26(1), 16 (2018)

63. S.D. Ramchurn, T.D. Huynh, Y. Ikuno, J. Flann, F. Wu, L. Moreau, N.R. Jennings,
J.E. Fischer, W. Jiang, T. Rodden, et al., in Proceedings of the 2015 International Con-
ference on Autonomous Agents and Multiagent Systems (International Foundation for
Autonomous Agents and Multiagent Systems, 2015), pp. 533–541

64. M. Imran, P. Mitra, C. Castillo, in Proceedings of the Tenth International Conference
on Language Resources and Evaluation LREC 2016 (2016)

65. J. Yin, A. Lampert, M. Cameron, B. Robinson, R. Power, IEEE Intelligent Systems
27(6), 52 (2012)

66. N. Pandey, S. Natarajan, REMOTE SENSING AND GIS (2012)
67. N. Pandey, S. Natarajan, in Proceedings of the International Conference on Advances in

Computing, Communications and Informatics (ICACCI) (IEEE, 2016), pp. 1352–1356
68. V. Sadhu, G. Salles-Loustau, D. Pompili, S. Zonouz, V. Sritapan, in Proceedings of the

IEEE International Conference on Autonomic Computing (ICAC) (IEEE, 2016), pp.
251–256

69. A. Trekin, G. Novikov, G. Potapov, V. Ignatiev, E. Burnaev, arXiv preprint
arXiv:1803.00397 (2018)

70. Y. Bai, C. Gao, S. Singh, M. Koch, B. Adriano, E. Mas, S. Koshimura, IEEE Geoscience
and Remote Sensing Letters 15(1), 43 (2018)

71. A. Vetrivel, N. Kerle, M. Gerke, F. Nex, G. Vosselman, (2016)
72. D.T. Nguyen, F. Ofli, M. Imran, P. Mitra, in Proceedings of the 2017 IEEE/ACM Inter-

national Conference on Advances in Social Networks Analysis and Mining 2017 (ACM,
2017), pp. 569–576

73. N. Attari, F. Ofli, M. Awad, J. Lucas, S. Chawla, in Proceedings of the 2017 IEEE
International Conference on Data Science and Advanced Analytics, DSAA (IEEE, 2017),
pp. 50–59

74. D.M. Jiang, Z.B. Li, in Applied Mechanics and Materials, vol. 263 (Trans Tech Publ,
2013), vol. 263, pp. 3288–3291

75. G. Cervone, E. Sava, Q. Huang, E. Schnebele, J. Harrison, N. Waters, International
Journal of Remote Sensing 37(1), 100 (2016)

76. G. Cervone, E. Schnebele, N. Waters, M. Moccaldi, R. Sicignano, in Seeing Cities Through
Big Data (Springer, 2017), pp. 443–457

77. Y. Zhang, H.V. Burton, H. Sun, M. Shokrabadi, Structural Safety 72, 1 (2018)
78. B.T. Pham, K. Khosravi, I. Prakash, Environmental Processes 4(3), 711 (2017)
79. Z. Wang, C. Lai, X. Chen, B. Yang, S. Zhao, X. Bai, Journal of Hydrology 527, 1130

(2015)
80. A.R. Joshi, I. Tarte, S. Suresh, S.G. Koolagudi, in IEEE transaction on Global Human-

itarian Technology Conference (GHTC) (IEEE, 2017), pp. 1–7
81. D.K. Yoon, S. Jeong, in Quantitative Regional Economic and Environmental Analysis

for Sustainability in Korea (Springer, 2016), pp. 123–140
82. M.A. Zanini, F. Faleschini, P. Zampieri, C. Pellegrino, G. Gecchele, M. Gastaldi, R. Rossi,

Structure and Infrastructure Engineering 13(9), 1117 (2017)
83. M. Izadi, A. Mohammadzadeh, A. Haghighattalab, Journal of the Indian Society of Re-

mote Sensing 45(6), 965 (2017)
84. B. Resch, F. Usländer, C. Havas, Cartography and Geographic Information Science pp.

1–15 (2017)
85. A. Nadi, A. Edrisi, International Journal of Disaster Risk Reduction 24, 12 (2017)



Analytics and Evolving Landscape of Machine Learning for Emergency Response 35
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