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ABSTRACT

Traditional approaches like artificial neural networks, in spite of their intelligent support such as learn-
ing from large amount of data, are not useful for big data analytics for many reasons. The chapter dis-
cusses the difficulties while analyzing big data and introduces deep learning as a solution. This chapter 
discusses various deep learning techniques and models for big data analytics. The chapter presents 
necessary fundamentals of an artificial neural network, deep learning, and big data analytics. Different 
deep models such as autoencoders, deep belief nets, convolutional neural networks, recurrent neural 
networks, reinforcement learning neural networks, multi model approach, parallelization, and cognitive 
computing are discussed here, with the latest research and applications. The chapter concludes with 
discussion on future research and application areas.

INTRODUCTION

Deep learning refers to a kind of machine learning techniques in which several stages of non-linear 
information processing in hierarchical architectures are utilized for pattern classification and for feature 
learning. Recently, it also involves a hierarchy of features or concepts where higher-level concepts are 
defined from lower-level ones and where the same lower-level concepts help to define higher-level ones. 
With the enormous amount of data available today, big data brings new opportunities for various sectors; 
in contrast, it also presents exceptional challenges to utilize data. Here deep learning plays a key role in 
providing big data analytics solutions. The chapter discusses in brief fundamentals of big data analytics, 
neural network, deep learning. Further, models of deep learning are analyzed with their issues and limita-
tions along with possible applications. Summary of the literature review is also provided in this chapter. 
Further, future possible enhancements are also listed in the domain. This chapter is organized as follows.
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Section 1 introduces various fundamental topics such as big data analytics, artificial neural network, 
and deep learning. Section 2 highlights big data analytics by discussing large scale optimization, high 
dimensional data handling, and handling dynamic data. Section 3 discusses different deep models such 
as autoencoders, deep belief nets, deep convolutional neural networks, recurrent neural networks, re-
inforcement learning neural networks, multi model approach, parallelization, and cognitive computing 
with latest research and applications. Section 4 discusses some successful applications of deep learning 
for big data analytics. Section 5 discusses the issues and problems with the deep learning. Section 6 
concludes the paper with summary and provides discussion on the work done so far and future research 
and application areas in the domain.

Big Data Analytics

Data word came from ‘Datumn’ which means ‘thing given’. It has been used since early 1500 i.e. since 
beginning of computing. With the evolution of computing technology, the word has become more popular. 
Data are raw observations from domain of interest. It can be collection of numbers, words, measure-
ments, or textual description of things. Obviously, data is everywhere and serves as an important base for 
business related decision making. It is also said that data is currency of knowledge as it provides basis 
of reasoning and analysis. Every business generates lots of data, which further act as a good resource 
to analyze, understand and improve the business. It is really an irony that the data which can help in 
improving quality of business makes the life miserable just because of our limitations to understand and 
use it properly. Such data creates a big problem due to its size, unstructuredness and redundancy. Some 
researchers identify the parameters like volume, velocity and variety as main reasons of the problem to 
handle data. According to Eric Horvitz and Tom Mitchell (2010) and James Manyika et al., (2011) such 
data when analyzed and used properly, offers a chance to solve problems, accelerates economic growth, 
and improve quality of life.

Big data is also a kind of data but big enough to handle. For example, consider a medical store hav-
ing cough syrup bottles on shelves. The labels on the bottles show medicine name, type, components, 
batch number and expiry date. These data are very structured, small in amount (even for thousands of 
bottles in many batches, and such many medicines in the store) and homogeneous in nature. On the 
other hand, why the particular medicine expires so early requires really a big amount of data (and big 
amount of time and effort also). Such big data can act as a good resource to increase productivity and 
hence improves businesses in terms of quality, brand image and customer surplus. Effective use of big 
data can be one of the key factors of competition and growth for individual firm. It is predicted that by 
2018, the United States alone could face a shortage of 140,000 to 190,000 people with deep analytical 
skills as well as 1.5 million managers and analysts with the know-how to use the analysis of big data to 
make effective decisions (Manyika, et al., 2011).

Big data handling encompasses activities in five dimensions. The first step is the data procurement, 
where data are identified and procured as per the requirement and available sources. Prior to the data 
collection, it is required to have proper vision and plan to make sure that how these data will be handled 
and what are the expectations. The volume, velocity and variety of the data make these procedures more 
challenging. Since the data is big, procurement would not be an easy job. It may leave some gap and 
results in missing data. To compensate the gap, data processing is needed, which is the second step. One 
may use soft computing techniques (such as fuzzy logic) to predict the missing data and fill in the gap. 
Next step is to find out a proper representation scheme so that the complete set of data can be presented 
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and preserved in a suitable format. This phase is known as data curation. The word curation comes 
from the concept that valuable artifacts are preserved in a museum and the museum curator preserves 
and facilitates artifact for further use such as analysis. Here, data curators do this job. Most of the time, 
the data are represented into electronic form to facilitate efficient analysis. Otherwise, due to volume 
of data, it is very difficult to analyze them manually. After proper representation of data, the data are 
ready to be analyzed. Further, the data and the analysis made can be presented in visual forms. Figure 
1 represents the four dimensional activities to manage big data.

For different activities in these five dimensions, many tools are used. Statistical tools, mathematical 
tools, soft computing and machine learning tools, etc. can be used to manage different activities related 
to the big data.

Artificial Neural Network

Artificial Neural Network (ANN) is a methodology that mimics the working of nervous system in a narrow 
domain. Basic component of a neural network is neuron. ANN generally have many neurons connected 
with each other in a predefined order and are capable of learning (from the data or without data) using 
various paradigms. Hopfield model with parallel relaxation learning, perceptron with fixed increment 
learning, multi-layer perceptron with back propagation learning and Kohenon with unsupervised learning 
are a few popular models with the respective learning algorithm. There are many situations where data is 
available but it is really difficult to derive generalize logic from the data. In this case, ANNs help most.

The typical multiplayer neural networks, particularly multi-layer perceptron, consist of one (or at most 
two) hidden layer(s) with input and output layer. If there is no hidden layer, it can solve only linearly 

Figure 1. Five dimensional activities in big data management
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separable problems as illustrated in first part of the Figure 2. If there is one hidden layer, the ANN can 
approximate a function that having a continuous mapping from one finite space to another. If there are 
two hidden layers it can approximate any smooth mapping to any accuracy. The hidden layers do not 
interact with the external interface, but they can influence the working of ANN. Rather, introduction 
of the hidden layer helps the network to exhibit non-linear behavior. Figure 2 illustrates structure of 
multiplayer perceptron with one hidden layer.

Such typical (or shallow) neural network works well and remarkably useful for standard applications. 
Adding more hidden layers can help learning in perfect non-linear manner, but simultaneously it over 
fits the network and increase the issues related to efficiency. That is, the earlier layers can learn better, 
but learning later layer may get stuck.

Deep Learning

Deep Learning is a technique of machine learning that consists of many hierarchical layers to process 
the information in non-linear manner, where some lower level concepts help to define the higher level 
concepts. Deep learning is defined as “Deep neural networks contain multiple non-linear hidden layers 
and this makes them very expressive models that can learn very complicated relationships between their 
inputs and outputs…” by Nitish Srivastava et al., (2014). The shallow artificial neural network, as stated 
above are not capable of handling big amount of complex data, which are obvious in many mundane 
applications such as natural speech, images, information retrieval and other human like information pro-
cessing applications. Deep learning is suggested for such applications. With deep learning, it is possible to 
recognize, classify and categorize patterns in data for a machine with comparatively less efforts. A word 
‘less engineering labor’ is used by Mark Bergen (2015) to mention less effort by machines. He further 
stated at the same source that the deep learning enables the process to unfold huge reams of previously 
unmanageable data. Google is pioneer to experiment deep learning, which is initiated by the Stanford 
Computer Scientist named Andrew Ng (now at Baidu as Chief Scientist). Experiment Google’s “deep 
dream” images floating around when you are Googling! Figure 3 is generated by Google (On Circulation, 
n.d.). The concept is just like what you see in clouds; and believe me, everybody’s perception is different.

Figure 2. Single and multilayer perceptron
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Deep learning offers human like multi layered processing in comparison with the shallow architecture. 
The basic idea of deep learning is to employ hierarchical processing using many layers of architecture. 
The layers of the architecture are arranged hierarchically. Each layer’s input is provided to its adjacent 
layer after some pre-training. Most of the time, such pre-training of a selected layer is done in unsuper-
vised manner. Deep learning follows distributed approach to manage big data. The approach assumes 
that the data are generated considering various factors, different time and various levels. Deep learning 
facilitates arrangement and processing of the data into different layers according to its time (occurrence), 
its level, or nature. Deep learning is often associated with artificial neural network.

There are three categories of deep learning architectures namely (i) generative, (ii) discriminative, 
and (iii) hybrid deep learning architectures (Deng, 2014). Architectures belong to the generative category 
focus on pre-training of a layer in unsupervised manner. This approach eliminates the difficulty of train-
ing the lower level architectures, which relay on the previous layers. Each layer can be pre-trained and 
later included into the model for further general tuning and learning. Doing this resolves the problem 
of training neural network architecture with multiple layers and enables deep learning. Neural network 
architecture may have discriminative processing ability by stacking output of each layer with the original 
data or by various information combinations and thus forming deep learning architecture. According to 
Li Deng (2014) the descriptive model often considers the neural network outputs as conditional distri-
bution over all possible label sequences for the given input sequence, which will be optimized further 
through an objective function. The hybrid architecture combines the properties of the generative and 
discriminative architecture. The typical structure and mechanism of deep learning ANN is shown in 
Figure 4. The typical deep learning can be done as follows.

• Construct a network consisting of an input layer and a hidden layer with necessary nodes.
• Train the network.
• Add another hidden layer on the top of the previously learned network to generate a new network.

Figure 3. Deep dream image generated by Google
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• Re-train the network.
• Repeat adding more layers and after every addition, retrain the network.

ANALYZING BIG DATA

The big data analytics is required to manage huge amounts of data efficiently. The major aspects that can 
be considered while dealing with big data are large scale optimization, high dimensional data handling 
and dynamical data handling.

Large Scale Optimization

Optimization deals with finding the most effective solution to the problems using well defined proce-
dures and models. Everybody deals with the problem of optimization either in direct (systematic) way or 
indirect (informal) way. The problems which need optimization include travelling salesperson problem, 
selecting a course from available courses under given stream (say science stream) and level (12th grade), 
e-commerce activities (selection of best mobile through various online shopping sites), etc.

Optimization helps in finding the cost-effective alternatives to perform the task. Commonly, it is 
considered as maximization or minimization of a function of resources. Some examples are maximi-
zation of profit, minimization of cost and errors. For domains with finite dimension, various models 
for such problem are available; however, when it comes to the big data, task of optimization becomes 

Figure 4. ANN for deep learning
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challenging. In case of the big data, not only the size of transactions is voluminous, but the number of 
variables and number of constraints are also high. On the contrary, sometime data and constraints are 
moderate but their structure is complex. Such complexity in the structure increases difficulty of apply-
ing current methods on them. For example, feature learning from the large repository of medical images 
in optimum manner will be difficult with support of the traditional method. Further, it would require 
manual tuning of some parameters. Besides traditional approaches, machine learning and parallel opti-
mization methods are also becoming popular. Some traditional methods for the optimization methods are 
Newton-Raphson’s method, Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, conjugate gradient 
method and stochastic gradient descent method and stochastic gradient descent method (SGD). Many 
researchers have worked in this domain (Dean & Ghemawat, 2008), (Chu, et al., 2007), (Teo, Le, Smola, 
& Vishwanathan, 2007), (Mann, McDonald, Mohri, Silberman, & Walker, 2009), (Zinkevich, Weimer, 
Smola, & Li, 2010). In the work of Jeffrey Dean, et al., (2012), a problem of training a deep network 
with billions of parameters using tens of thousands of CPU cores is discussed. The model is successfully 
tested on large repository of image and then on speech recognition application. Experiments on Speech 
recognition was also carried out using the deep learning approachfor large scale optimization by George 
Dahl, et al., (2012) and Geoffrey Hinton, et al., (2012). Yann Dauphin, et al., (2014) have also used deep 
learning for efficient optimization.

High Dimensional Data Handling

Complexity increases when the problem has more dimensions. Limited dimension of the problem makes 
the problem easy to solve, however, the solution is not powerful and does not provide any high-level 
knowledge. Increased number of dimensions results in tremendous growth of data which are difficult to 
handle, visualize and solve. It is said that due to exponential growth of number of possible values with 
each dimension, complete enumeration of all subspaces becomes intractable with increased dimension-
ality, which is known as the curse of dimensionality. Deep learning will be helpful in managing such 
high dimensional data and help in clustering, processing and visualizing such data. Bio informatics, 
sensor web, vision and speech recognition are fields where one can find such high dimensional data. 
Deep learning models are used for managing such high dimensional data (Krizhevsky, Sutskever, & 
Hinton, 2012), (Hinton, et al., 2012). Deep learning technique is also useful in extracting meaningful 
representations besides dimensionality reduction (Bengio, Courville, & Vincent, 2013). Yann Le Cun, 
et al., (2015) have also documented and proved the utility of deep learning technology to handle high 
dimensional data in various fields such as industry, business and research.

Handling Dynamical Data

Besides the volume and structure, time is another major factor that increases the complexity in the 
data and hence makes the job of managing data more difficult. Dynamic data are varying in terms of 
size, volume, and underlying structure. Large scale and dynamic data are generated and manipulated in 
many areas such as fluid dynamics, material science, modular dynamics and bio-inspired systems. An 
example domain is human speech generation. Human speech generation follows hierarchical structure. 
Deep learning would be useful in modeling structured speech. Researchers like Li Deng, et al., (2013) 
and Sabato Marco Siniscalchi, et al., (2013) have claimed that such models are really deeper and effec-
tive than the existing solutions. Deep learning is also useful in managing hidden dynamic models as 
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well as network also (Carneiro & Nascimento, 2013). While creating a neural network with an aim to 
learn deep, a node of the network can also be created dynamically. This approach can handle the afore-
mentioned aspect of the dynamic input data. Such approach is experimented long back by Timur Ash 
(1989). Deep neural network approach is also used by Itamar Arel, et al., (2009) for dynamic pattern 
representation in combining various concepts in unsupervised manner. Researchers have used the deep 
learning approach to handle log time gaps between events using the non-linear and adaptive extensions 
(Mozer, 1989), (Hihi & Bengio, 1996).

DIFFERENT DEEP MODELS

This section introduces various models of deep learning.

Autoencoders

An autoencoder is an artificial neural network capable of learning various coding patterns. The simple 
form of the autoencoder is just like the multilayer perceptron containing an input layer, one or more 
hidden layers, and an output layer. The major difference between the typical multilayer perceptron and 
feed forward neural network and autoencoder is in the number of nodes at the output layer. In case of the 
autoencoder, the output layer contains same number of nodes as in the input layer. Instead of predicting 
target values as per the output vector, the autoencoder has to predict its own inputs. The broad outline 
of the learning mechanism is as follows.

For each input x,

• Do a feed-forward pass to compute activation functions provided at all the hidden layers and out-
put layers.

• Find the deviation between the calculated values with the inputs using appropriate error function.
• Back propagate the error in order to update weights.

Repeat the task till satisfactory output.
If the number of nodes in the hidden layers is fewer than the input/output nodes, then the activations 

of the last hidden layer are considered as a compressed representation of the inputs. When the hidden 
layer nodes are more than the input layer, an autoencoder can potentially learn the identity function and 
become useless in majority of the cases. The classic use of the autoencoder is described by Li Deng, et 
al., (2010).

Deep Belief Net

Deep belief network is a solution to the problem of handling non-convex objective functions and local 
minima while using the typical multilayer perceptron. The concept of the deep belief network was first 
suggested by Geoffrey Hinton, et al., (2006). This is an alternative type of deep learning consisting of 
multiple layers of latent variables with connection between the layers. The deep belief network can be 
viewed as Restricted Boltzmann Machines (RBM) where each sub-network’s hidden layer acts as the 
visible input layer for the adjacent layer of the network. It makes the lowest visible layer training set 
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for the adjacent layer of the network. This way, each layer of the network is trained independently and 
greedily. The hidden variables are used as the observed variables to train each layer of the deep structure. 
The training algorithm for such deep belief network is provided as follows.

• Consider a vector of inputs.
• Train a restricted Boltzmann machine using the input vector and obtain the weight matrix.
• Train the lower two layers of the network using this weight matrix.
• Generate new input vector by using the network (RBM) through sampling or mean activation of 

the hidden units.
• Repeat the procedure till the top two layers of the network are reached.

The fine tuning of the deep belief network is very similar to the multilayer perceptron. Such deep 
belief networks are useful in acoustic modeling (Mohamed, Dahl, & Hinton, 2012), speech recognition 
(Mohamed, Yu, & Deng, 2010), phone recognition (Mohamed, Dahl, & Hinton, 2009) and other hier-
archical process requiring deep learning.

Convolutional Neural Networks

Convolutional neural network is another variant of the feed forward multilayer perceptron. It is a type of 
feed forward neural network, where the individual neurons are arranged in such a way that they respond 
to overlapping regions in the visual field. Such network follows the visual mechanism of the living 
organisms. The cells in the visual cortex are sensitive to small sub-regions of the visual field, called a 
receptive field. The sub-regions are arranged to cover the entire visual field and the cells act as local 
filters over the input space. According to David Hubel and Torsten Wiesel (1968) such cells are well-
suited to exploit the strong spatially local correlation present in natural images. Earlier, similar approach 
had been used for recognition of hand written characters called neocognitron. According to Yann Le 
Cun, et al., (2015), the neocognitron is considered as a predecessor of the convolutional networks. Back-
propagation algorithm is used to train the parameters of each convolution kernel. Further, each kernel 
is replicated over the entire image with the same parameters. There are convolutional operators which 
extract different features of the input. Besides the convolutional layer, the network contains rectified 
linear unit layer, pooling layers to compute the max or average value of a particular feature over a region 
of the image, and a loss layer consisting of application specific loss functions. Image recognition and 
video analysis and natural language processing are major applications of such neural network. Some of 
the latest work in the area is discussed below.

Ranking convolutional neural network for the age estimation is experimented by Shixing Chen, et 
al., (2017). ResNet-101 deep network model for 3DMM regression is proposed by Anh Tuan Tran, et 
al., (2017) which uses deep learning and available for download with the network technical details and 
values of the chosen parameters.

Deep convolutional neural networks are also used in work of Hueu-Fang Yang, et al., (2018). The 
paper highlights use of the deep learning model for construction of binary hash codes from labeled data in 
order to search large scale images. Deep neural networks have been used for unlabeled or poorly labeled 
data also. Oscar Keller, et al., (2016) discusses convolutional network, its training and its performance 
for 1 billion hand images, where data are continuous and poorly labelled.
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Deep networks have also been used for geographic information analysis such as analysis of images of 
earth (Audebert, Saux, & Lefevre, 2016). Recently, a very effective deep learning algorithm is introduced 
for channel pruning without degradation and efficiently accelerates learning of very deep network. Work 
of Yihui He, et al., (2017) explains it in detail.

Recurrent Neural Networks

The convolutional model works on fixed number of inputs, generates a fix sized vector as output with 
predefined number of steps. The recurrent networks allow us to operate over sequences of vectors in 
input and in output. In case of recurrent neural network, the connection between units forms a directed 
cycle. Unlike the traditional neural network, the recurrent neural network input and output are not inde-
pendent, but related. Further, the recurrent neural network shares the common parameters at every layer. 
One can train the recurrent network in a way which is similar to the traditional neural network using 
back-propagation method. Here, calculation of gradient depends not on the current step, but on previous 
steps also. A variant called bidirectional recurrent neural network is also used for many applications. 
The bidirectional neural network not only considers the previous but also the expected future output. In 
bidirectional and simple recurrent neural networks, deep learning can be achieved by introducing multiple 
hidden layers. Such deep networks provide higher learning capacity with lots of learning data. Speech, 
image processing and natural language processing are some of the candidate areas where recurrent neu-
ral networks can be used. Applications of the recurrent neural network are described in various papers 
(Mikolov, Karafiat, Burget, Cernocky, & Khudanpur, 2010), (Mikolov, Kombrink, Burget, Cernocky, & 
Khudanpur, 2011), (Sutskever, Martens, & Hinton, 2011), (Graves & Jaitly, 2014).

Reinforcement Learning to Neural Networks

Reinforcement learning is a kind of hybridization of dynamic programming and supervised learning 
(Bertsekas & Tsitsiklis, 1996). Typical components of the approach are environment, agent, actions, 
policy and cost functions. The agent acts as a controller of the system; policy determines the actions to 
be taken; and the reward function specifies the overall objective of the reinforcement learning problem. 
In Reinforcement Learning, an agent plays a key role learning next course of action through trial and 
error-based experiments. The overall idea of the reinforcement learning is as follows.

“An agent iteratively interacts with an environment by carrying out an action ut based on its observed 
state information xt, which can be smaller (partially observable) or equal (fully observable) to the envi-
ronmental state st. In return it retrieves a feedback in form of a reward Rt+1, which it uses to improve its 
policy and thereby increase its future sum of rewards (t = 1, …..., ∞)” (Sutton & Barto, 1998).

Application of this approach can be found in robotics, games, swarm intelligence, multi agent systems 
and control theory.

Multi-Modalities for Deep Learning

So far, we have seen the approaches, models and applications for single modalities of the neural network, 
specifically deep neural networks. However, the deep neural networks can also be applied to learn fea-
tures over multi modalities. Multi-model learning involves relating information from multiple sources. 
For example, manipulating audio and visual sources at a time falls into this category. This can be done 
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in two ways. First way is to consider data from all modalities and make them available at every phase. 
Such work is demonstrated in work of Garasimos Potamianos, et al., (2004) regarding audiovisual speech 
recognition. Another way follows cross modality learning. Here data from multiple modalities is avail-
able for feature learning phase only. Typically, supervised training and testing phases deal with the data 
from a single modality; however, Jiquan Ngiam, et al., (2011) describe a work on cross modality and 
present a series of tasks for multi model learning and shows training of deep networks that learn features 
to address these tasks. Many applications (Huang & Kingsbury, 2013), (Kim, Lee, & Provost, 2013), 
(Ngiam, et al., 2011) employ the approach in the field of audio visual data. Other applications of the 
approach include work of many researchers (Lai, Bo, Ren, & Fox, 2013), (Lenz, Lee, & Saxena, 2013) 
in the field of robotics with visual and depth data; and medical applications with visual and temporal 
data (Shin, Orton, Collins, Doran, & Leach, 2013).

Parallelization

To reduce the time of training, parallelization of the learning processes is essential. By this way, training 
of deep neural network becomes fast and efficient. Parallelization is done via distributing the model and 
applying same data sets for learning. For example, the 1000 * 1000 weight matrix can be divided into 
two processing units with effective size of 1000*500. Such data parallelism is fast for small network and 
slow for big network. Parallelism can be applied on model as well as data. In case of model parallelism, 
different parts of models are trained in parallel. In case of the data parallelism, data are distributed on 
models. In case of later choice, the model parameters must be synchronized.

Cognitive Computing

Cognitive computing is defined as a simulation of human thinking process with the help of machine 
learning algorithms and other areas of artificial intelligence. As stated earlier, deep learning is suitable 
of simulation of many human dominated processes such as perception, natural language processing, 
etc. helping in general thinking, and decision making. Such processes are hierarchical in nature; hence 
it is suitable for deep learning technique. Cognitive computing facilitated via deep learning techniques 
is also used for analyzing the so called dark data, which are yet to be analyzed. Dark data are generally 
data which are in bulk, unstructured in nature and difficult to analyze and visualize. Another aspect of 
the dark data is concerned with its location. They are stored generally in locations which are difficult 
and challenging to explore. To identify, process, analyze and visualize such dark and big data, deep 
learning can be utilized. IBM and other companies have started employing deep learning techniques for 
understanding, speech, vision, language translation, dialog and other tasks. An application for healthcare 
is also developed by IBM Research and Memorial Sloan Kettering Cancer Center for detecting skin 
cancer using smart phones and could computing platform. The application works in conjunction with 
deep learning to flag cancer images and analyze them on demand.

SUCCESSFUL APPLICATIONS OF DEEP LEARNING

The generative deep model using unsupervised manner was introduced by work of Geoffrey Hinton, et 
al., (2006), which was named as Deep Belief Network (DBN). The network learns with the help of a 
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greedy learning algorithm in order to optimize the weights. These weights are provided later to a multi 
layered network as an initial weight set. Work done by Abdel Mohamed, et al., (2010), Geoffrey Hinton 
et al., (2012) and Abdel Mohamed, et al.,(2012) also fall in the category of pre-trained back-propagation 
learning. A real-world application of prelearning is discussed by Veselin Stoyanov et al., (2011) using 
deep generative graphical models. Work of Ray Kurzweil (2012) also illustrates a generative deep learn-
ing model. A deep learning architecture is designed by Graham Taylor et al., (2006) for human motion 
modeling. For natural language processing and natural scene parsing, a deep learning model is proposed 
by Richard Socher, et al., (2011). Mohammad Havaei et al., (2015) used deep learning concept for large 
data set containing medical imaging.

Spoken language identification and phone recognition is done through deep discriminative learning 
by Dong Yu et al., (2010) and Dong Yu and Li Deng (2010) respectively. Later Dong Yu, et al., (2010) 
suggested an improved model for natural language processing. Nelson Morgan (2012) has also proposed 
a deep learning approach for automatic speech recognition. He has used discriminatively trained, feed 
forward neural networks for automatic speech recognition involving large and complex data.

The hybrid deep learning refers to the utilization of generative and discriminative deep learning 
concept in architecture. The generative concept and discriminative concept may work in cooperative 
or concurrent manner with the ultimate aim of getting dual advantages from both the concepts. Such 
hybridization is experimented in the work of Tara Sainath, et al., (2013) managing deep convolutional 
neural network for managing vocabulary for continuous speech recognition, which is practically very 
large and complex to handle with typical approaches. Similar work is presented by George Dahl, et al., 
(2012) while the latest work in this category is the work of Cha Zhang and Zhengyou Zhang (2014) with 
the basic objective to improve the multi-view face detection.

There are some other noticeable works on big data manipulation using the deep learning approach. A 
survey is presented in the work of Yann Le Cun, et al., (2015) as well as Maryam Najafabadi, et al., (2015). 
As discussed, the deep learning networks are slow and difficult to train. Further, they have tendency to 
over-fit themselves. To solve these problems, residual framing deep learning network is proposed by 
Kaiming He, et al., (2016). As per the claims of the authors, the network layers are reformulated using 
residual functions. The above-mentioned paper uses 152 layers and proposes really very deep learning.

Table 1 enlists some applications in various domains with reference.
Those who want to experiment ready models of the big data for various domains, pre-trained models 

are available at model zoo (Hasanpour, 2018). These models can be used to experiment deep learning 
in selected domains. The models available in this repository are ready to use, pre-learned, and can be 
downloaded by running following script.

scripts/download_model_binary.py<dirname> 

where <dirname> is a name of directory associated with concern model in the zoo repository.

ISSUES AND LIMITATIONS OF DEEP LEARNING

Deep learning has started late in comparison with other machine learning techniques. A few of the many 
reasons can be lack of data and lack of able infrastructure, particularly slow processors in comparison 
with the modern era. It is said by Yann Lecun, et al., (2015) that the data set were approximately 1,000 
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Table 1. Latest work done in the area of big data manipulation using deep learning

Reference Domain Year

Cireşan, D., Meler, U., Cambardella, L. & Schmidhuber, J. (2010). Deep, big, simple neural nets for 
handwritten digit recognition. Neural Computation, 22(12), 3207-3220.

Handwritten digit 
recognition 2010

Seide, F., Li, G. &Yu, D. (2011). Conversational speech transcription using context-dependent deep 
neural networks. In Proceedings of Interspeech, Florence, Italy (pp. 437-440).

Conversational speech 
transcription 2011

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K. & Kuksa, P. (2011). Natural 
language processing almost from scratch. Journal of Machine Learning & Research, 12, 2493–
2537.

Natural language 
processing 2011

Gantz, J. & Reinsel, D. (2011). Extracting value from chaos. Hopkinton, MA: EMC. Chaos Management 2011

Lin, J. & Kolcz, A. (2012). Large-scale machine learning at twitter. In Proceeding of ACM 
SIGMOD, Scottsdale, Arizona (pp. 793-804). Twitter data handling 2012

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., … Kingsbury, B. (2012). Deep 
neural networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine, 
29(6), 82-97.

Speech Recognition 2012

Panda, B., Herbach, J., Basu, S. & Bayardo, R. (2012). MapReduce and its application to massively 
parallel learning of decision tree ensembles. Scaling Up Machine Learning: Parallel and 
Distributed Approaches. Cambridge, UK: Cambridge University.

Parallel learning of 
decision tree 2012

Srivastava, N. & Salakhutdinov, R. (2012). Multimodal learning with deep Boltzmann machines. In 
Proceedings of Neural Information Processing Systems, Lake Tahoe, Nevada. Multi model learning 2012

Crego, Muñoz, & Islam, (2013). Big data and deep learning: Big deals or big delusions? Comments on big data 2013

Mikolov, T., Le, QV, Sutskever, I. (2013). Exploiting similarities among languages for machine 
translation. Computation and Language. arXiv:1309.4168 Machine translation 2013

Zhang, K. &Chen, X. (2014). Large-scale deep belief nets with MapReduce. IEEE Access, 2, 395-
403.

Deep belief network 
using MapReduce 2014

Jones, N. (2014). Computer science: The learning machines. Nature, 505(7482), 146-148. Learning machines 2014

Fei-Fei, L., Karpathy, A., Leung, T., Shetty, S., Sukthankar, R., & Toderici, G. (2014). Large-scale 
video classification with convolutional neural networks. In IEEE Conference on Computer Vision 
and Pattern Recognition, Columbus, Ohio.

Large scale video 
classification 2014

Lapedriza, À., Oliva, A., Torralba, A., Xiao, J., & Zhou, B. (2014). Learning deep features for 
scene recognition using places database. In Conference on Neural Information Processing Systems, 
Montreal, Canada.

Scene learning 2014

He, K., Zhang, X., Ren, S. & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-
level performance on image net classification. In International Conference on Computer Vision, 
Santiago, Chile.

Image classifiers from 
very large set of images 2015

He, K., Zhang, X., Ren, S., & Sun, J. (2014). Spatial pyramid pooling in deep convolutional 
networks for visual recognition. In European Conference on Computer Vision, Zurich.
and 
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. IEEE 
Conference on Computer Vision and Pattern Recognition, (pp. 770-778). Las Vegas, USA.

Image recognizer, and 
uses more than 150 
layers

2014, 
2016

Larsson, G., Maire, M., Shakhnarovich, G. (2016). Learning representations for automatic 
colorization. In European Conference on Computer Vision, Amsterdam.

Recolouring black and 
white images 2016

Koller, O., Ney, H., & Bowden, R. (2016). Deep Hand: How to Train a CNN on 1 Million Hand 
Images. In IEEE International Conference on Computer Vision and Pattern Recognition, Las 
Vegas, NV.

Convolutional 
network, its training 
and its performance 
for 1 billion hand 
images, where data are 
continuous and poorly 
labelled

2016

continued on following page
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times smaller and computing infrastructure were approximately 1,000,000 times slower in comparison 
with today’s volume of data sets and computing infrastructure. Further, no proper consideration was 
given to the domain of deep learning. It was believed that adding many layers to an artificial neural 
network, that is increasing dimensionality of the neural network, over-fits the network and also degrades 
its performance. Due to really big data overflow in various domains led experts and researchers to think 
about the deep leaning.

Deep learning can be put in category of empirical success, just “simple parametric models trained 
with gradient descent” as mentioned by Francois Chollet (2017) and many real-life applications still can 
be solved with the deep learning techniques. However, because of simplicity and its belongingness in 
the category of the simple parametric and empirical model, many researchers consider it is not suitable 
for the real life complex problem solving. There are some other limitations of deep learning in general, 
which are discussed below.

• Deep neural networks are hard to train as each layer is learning at vastly different rate. Many a 
times the later layers learn at fast rate and starting layers still busy in learning. Reverse situation 
may also occur surprisingly, in which the initial layers learn in fast manner and later layers are still 
struggling for the same.

Reference Domain Year

Audebert, N., Saux, B., & Lefevre, S. (2016). Semantic Segmentation of Earth Observation Data 
Using Multimodal and Multi-scale Deep Networks. In Asian Conference on Computer Vision, 
Taipei, Taiwan.

Geographic information 
analysis such as 
analysis of images of 
earth

2016

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. In 
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV (pp. 770-778).

Channel pruning 
without degradation and 
efficiently accelerates 
learning of very deep 
network

2016

Chen, S., Caojin, Z., Ming, D., Jialiang, L., & Mike, R. (2017). Using ranking-CNN for age 
estimation. Honolulu, Hawaii.

Ranking convolutional 
neural network for the 
age estimation

2017

Anh Tuan, T., Tal, H., Iacopo, M., & Gerard, M. (2017). Regressing robust and discriminative 3D 
morphable models with a very deep neural network. In IEEE Conference on Computer Vision and 
Pattern Recognition, Honolulu, HI.

ResNet-101 deep 
network model for 
3DMM regression

2017

Huei-Fang, Y., Kevin, L., & Chu-Song, C. (2018). Supervised learning of semantics-Preserving 
hash via deep convolutional neural networks. In IEEE Transactions on Pattern Analysis and 
Machine Intelligence (pp. 437-451).

Construction of binary 
hash codes from labeled 
data in order to search 
large scale images

2017

Aksan, E., Pece, F. & Hilliges, O. (2018). Deep Writing: Making digital ink editable via deep 
generative modeling. In SIGCHI Conference on Human Factors in Computing Systems, Montréal, 
Canada.

Deep Generative 
Modeling 2018

Wang, H., Zhang, F., Xie, X. & Guo, M. (2018). DKN: Deep knowledge-aware network for news 
recommendation. In The Web Conference, Lyon, France.

Online news 
recommender systems 2018

Lee, J., Park, J., Kim, K.L. & Nam, J. (2018). Sample CNN: End-to-end deep convolutional neural 
networks using very small filters for music classification. Applied Sciences, 8(150). Music classification 2018

Table 1. Continued
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• Applications that require reasoning and explanation are not the candidate applications for deep 
learning technologies. The main reason of this is the knowledge of any neural network-based sys-
tem is stored in its connection in indirect form, which is not easy to be converted in verbal form. 
Here one can think for neuro-fuzzy system to get dual advantages of fuzzy logic-based systems 
such as uncertainty and explanation; besides advantages of neural network based systems. Some 
example applications are planning, scheduling, automatic programming, advisory systems, etc. 
are the example of the same. Further, such hybridization can incorporate advance fuzzy technol-
ogy such as type 2 fuzzy inference system.

• Often deep learning models misclassify the inputs to some absurd classes. This can be made pos-
sible through some tricky training sets called “adversarial examples”. Such examples are designed 
to confuse the model and trickedly lead the model to understand them in other way and classify 
into different than intended category.

• It should be noted that the deep leaning models cannot understand the inputs, hence human like 
understanding is bit far to achieve. By providing them validated big training data sets, one can 
only make the deep leaning models to learn geometric transformation from input to output without 
any human like understanding of the images.

• Deep models are generally experimented on narrow domains, for the concepts they are taught for; 
rather than the concepts they are not aware of. Humans can handle with partial, incompetent and 
ambiguous data also.

• The deep learning requires lots of data. Human beings are having capabilities to learn required 
knowledge from the very small amount of data and can come up with a physical model for prob-
lem solving. Deep learning models cannot do this. They require large amount of data. Further, in 
case of deep learning, even if it is trained with a sufficiently large amount of data, it may fail if it 
sees slightly different data.

CONCLUSION

From the discussion and aforementioned references, it is clear that deep learning might be helpful to ef-
fectively manage the great volume of complex data in a business. Many different models and algorithms 
have made it practically possible to implement deep learning in various domains. Some of the possible 
applications of deep learning to manage big data are mentioned below which can be developed with 
the help of tools such as MatLab using Octave toolbox for deep learning or dedicated software such as 
cuda-convnet1 offering a fast C++ implementation of convolutional neural networks.

• Natural language processing and natural query.
• Film industry where dubbing of film, re-colouring film prints and adding sounds to the silent 

films.
• News aggregators.
• Machine Translation in partly or fully automatic manner; also sentence corrections.
• Classification, abstraction and identification of multimedia objects.
• Automatic prescription of handwriting production and understanding.
• Managing knowledge wallet.
• Chatting agents.
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• Intelligent games.
• Google’s automatic statistician project.
• Intelligent web applications including searching and intelligent crawling.
• Image, speech and multimedia mining.
• Utilization of social network platform for various activities.
• Development for resources and sustainable development, population information, governance 

(weather forecasting, infrastructural development, natural resources).
• Sensor web, agricultural information, decision support systems in domains like forestry and 

fisheries.

The above-mentioned domains have possibility to generate and deal with lot many data, which are big 
in terms of volume, velocity and variety. Typical approach may not solve the problem with the desired 
effectiveness. Further, from the literature survey, it is observed that only a few of them are traversed. 
There is a good research opportunity in the above-mentioned applications and domains. One can also 
consider exploring the area such as privacy, security and intellectual copy rights of the big data and 
its analyzed results. Beside the above-mentioned applications, the generalized deep network that are 
self-evolutionary in nature can also be considered as a major future enhancement. In future, models of 
deep learning may be more generic in nature. The generated solutions need to be not only generic, but 
reusable too. As stated, deep learning requires lots of data and human control when data feeding and 
data interpreting is concerned. So, in the future, hybrid deep learning-based systems will become more 
popular. The key technologies that can be used for hybridization is fuzzy logic, genetic algorithms, 
rough sets and other modern artificial intelligent techniques. The results also lead to general and broader 
Artificial Intelligence techniques. Automatic machine learning and growing reusable generic systems 
are the future of deep learning.
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