Plot Open Access

Analytical RF Pulse Heating Analysis for High Gradient Accelerating Structures

Daniel González Iglesias; Daniel Esperante; Benito Gimeno; Marçà Boronat; César Blanch; Nuria Fuster-Martínez; Pablo Martinez-Reviriego; Pablo Martín Luna; Juan Fuster


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/5105593</identifier>
  <creators>
    <creator>
      <creatorName>Daniel González Iglesias</creatorName>
      <affiliation>Instituto de Física Corpuscular (CSIC-UV)</affiliation>
    </creator>
    <creator>
      <creatorName>Daniel Esperante</creatorName>
      <affiliation>Instituto de Física Corpuscular (CSIC-UV)</affiliation>
    </creator>
    <creator>
      <creatorName>Benito Gimeno</creatorName>
      <affiliation>Instituto de Física Corpuscular (CSIC-UV)</affiliation>
    </creator>
    <creator>
      <creatorName>Marçà Boronat</creatorName>
      <affiliation>Instituto de Física Corpuscular (CSIC-UV)</affiliation>
    </creator>
    <creator>
      <creatorName>César Blanch</creatorName>
      <affiliation>Instituto de Física Corpuscular (CSIC-UV)</affiliation>
    </creator>
    <creator>
      <creatorName>Nuria Fuster-Martínez</creatorName>
      <affiliation>Instituto de Física Corpuscular (CSIC-UV)</affiliation>
    </creator>
    <creator>
      <creatorName>Pablo Martinez-Reviriego</creatorName>
      <affiliation>Instituto de Física Corpuscular (CSIC-UV)</affiliation>
    </creator>
    <creator>
      <creatorName>Pablo Martín Luna</creatorName>
      <affiliation>Instituto de Física Corpuscular (CSIC-UV)</affiliation>
    </creator>
    <creator>
      <creatorName>Juan Fuster</creatorName>
      <affiliation>Instituto de Física Corpuscular (CSIC-UV)</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Analytical RF Pulse Heating Analysis for High Gradient Accelerating Structures</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <subjects>
    <subject>RF pulse heating</subject>
    <subject>thermal analysis</subject>
    <subject>RF accelerating structures</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2021-02-01</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Image">Plot</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5105593</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1109/TNS.2021.3049319</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/compactlight</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The main aim of this work is to present a simple&lt;br&gt;
method, based on analytical expressions, for obtaining the temperature&lt;br&gt;
increase due to the Joule effect inside the metallic walls&lt;br&gt;
of an RF accelerating component. This technique relies on solving&lt;br&gt;
the 1D heat transfer equation for a thick wall, considering that&lt;br&gt;
the heat sources inside the wall are the ohmic losses produced&lt;br&gt;
by the RF electromagnetic fields penetrating into the metal with&lt;br&gt;
finite electrical conductivity. Furthermore, it is discussed how the&lt;br&gt;
theoretical expressions of this method can be applied to obtain&lt;br&gt;
an approximation to the temperature increase in realistic 3D&lt;br&gt;
RF accelerating structures, taking as an example the cavity of&lt;br&gt;
an RF electron photoinjector and a travelling wave linac cavity.&lt;br&gt;
These theoretical results have been benchmarked with numerical&lt;br&gt;
simulations carried out with a commercial Finite Element Method&lt;br&gt;
(FEM) software, finding good agreement among them. Besides,&lt;br&gt;
the advantage of the analytical method with respect to the&lt;br&gt;
numerical simulations is evidenced. In particular, the model could&lt;br&gt;
be very useful during the design and optimization phase of RF&lt;br&gt;
accelerating structures, where many different combinations of&lt;br&gt;
parameters must be analysed in order to obtain the proper&lt;br&gt;
working point of the device, allowing to save time and speed&lt;br&gt;
up the process. However, it must be mentioned that the method&lt;br&gt;
described in this manuscript is intended to provide a quick&lt;br&gt;
approximation to the temperature increase in the device, which of&lt;br&gt;
course is not as accurate as the proper 3D numerical simulations&lt;br&gt;
of the component.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/777431/">777431</awardNumber>
      <awardTitle>CompactLight</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
18
35
views
downloads
Views 18
Downloads 35
Data volume 34.0 MB
Unique views 14
Unique downloads 14

Share

Cite as