Plot Open Access

Analytical RF Pulse Heating Analysis for High Gradient Accelerating Structures

Daniel González Iglesias; Daniel Esperante; Benito Gimeno; Marçà Boronat; César Blanch; Nuria Fuster-Martínez; Pablo Martinez-Reviriego; Pablo Martín Luna; Juan Fuster


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://zenodo.org/record/5105593">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Image"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/5105593</dct:identifier>
    <foaf:page rdf:resource="https://zenodo.org/record/5105593"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Daniel González Iglesias</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Instituto de Física Corpuscular (CSIC-UV)</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Daniel Esperante</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Instituto de Física Corpuscular (CSIC-UV)</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Benito Gimeno</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Instituto de Física Corpuscular (CSIC-UV)</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Marçà Boronat</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Instituto de Física Corpuscular (CSIC-UV)</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>César Blanch</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Instituto de Física Corpuscular (CSIC-UV)</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Nuria Fuster-Martínez</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Instituto de Física Corpuscular (CSIC-UV)</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Pablo Martinez-Reviriego</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Instituto de Física Corpuscular (CSIC-UV)</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Pablo Martín Luna</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Instituto de Física Corpuscular (CSIC-UV)</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Juan Fuster</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Instituto de Física Corpuscular (CSIC-UV)</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Analytical RF Pulse Heating Analysis for High Gradient Accelerating Structures</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2021</dct:issued>
    <dcat:keyword>RF pulse heating</dcat:keyword>
    <dcat:keyword>thermal analysis</dcat:keyword>
    <dcat:keyword>RF accelerating structures</dcat:keyword>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/H2020/777431/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2021-02-01</dct:issued>
    <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/>
    <owl:sameAs rdf:resource="https://zenodo.org/record/5105593"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/5105593</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <owl:sameAs rdf:resource="https://doi.org/10.1109/TNS.2021.3049319"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/compactlight"/>
    <dct:description>&lt;p&gt;The main aim of this work is to present a simple&lt;br&gt; method, based on analytical expressions, for obtaining the temperature&lt;br&gt; increase due to the Joule effect inside the metallic walls&lt;br&gt; of an RF accelerating component. This technique relies on solving&lt;br&gt; the 1D heat transfer equation for a thick wall, considering that&lt;br&gt; the heat sources inside the wall are the ohmic losses produced&lt;br&gt; by the RF electromagnetic fields penetrating into the metal with&lt;br&gt; finite electrical conductivity. Furthermore, it is discussed how the&lt;br&gt; theoretical expressions of this method can be applied to obtain&lt;br&gt; an approximation to the temperature increase in realistic 3D&lt;br&gt; RF accelerating structures, taking as an example the cavity of&lt;br&gt; an RF electron photoinjector and a travelling wave linac cavity.&lt;br&gt; These theoretical results have been benchmarked with numerical&lt;br&gt; simulations carried out with a commercial Finite Element Method&lt;br&gt; (FEM) software, finding good agreement among them. Besides,&lt;br&gt; the advantage of the analytical method with respect to the&lt;br&gt; numerical simulations is evidenced. In particular, the model could&lt;br&gt; be very useful during the design and optimization phase of RF&lt;br&gt; accelerating structures, where many different combinations of&lt;br&gt; parameters must be analysed in order to obtain the proper&lt;br&gt; working point of the device, allowing to save time and speed&lt;br&gt; up the process. However, it must be mentioned that the method&lt;br&gt; described in this manuscript is intended to provide a quick&lt;br&gt; approximation to the temperature increase in the device, which of&lt;br&gt; course is not as accurate as the proper 3D numerical simulations&lt;br&gt; of the component.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
        <dcat:accessURL rdf:resource="https://zenodo.org/record/5105593"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1109/TNS.2021.3049319"/>
        <dcat:byteSize>1859751</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5105593/files/manuscript_final.pdf"/>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1109/TNS.2021.3049319"/>
        <dcat:byteSize>22780</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5105593/files/Fig 10a).fig"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1109/TNS.2021.3049319"/>
        <dcat:byteSize>31439</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5105593/files/Fig 12.fig"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1109/TNS.2021.3049319"/>
        <dcat:byteSize>20374</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5105593/files/Fig 16.fig"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1109/TNS.2021.3049319"/>
        <dcat:byteSize>20946</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5105593/files/Fig 17.fig"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1109/TNS.2021.3049319"/>
        <dcat:byteSize>20656</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5105593/files/Fig 18.fig"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1109/TNS.2021.3049319"/>
        <dcat:byteSize>25620</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5105593/files/Fig 20.fig"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1109/TNS.2021.3049319"/>
        <dcat:byteSize>20464</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5105593/files/Fig 22.fig"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1109/TNS.2021.3049319"/>
        <dcat:byteSize>48341</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5105593/files/Fig 5a).fig"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1109/TNS.2021.3049319"/>
        <dcat:byteSize>25349</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5105593/files/Fig 5b).fig"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1109/TNS.2021.3049319"/>
        <dcat:byteSize>58299</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5105593/files/Fig 5c).fig"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1109/TNS.2021.3049319"/>
        <dcat:byteSize>58985</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5105593/files/Fig 6a).fig"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1109/TNS.2021.3049319"/>
        <dcat:byteSize>49099</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5105593/files/Fig 6b).fig"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1109/TNS.2021.3049319"/>
        <dcat:byteSize>25807</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5105593/files/Fig 7.fig"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1109/TNS.2021.3049319"/>
        <dcat:byteSize>34363</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5105593/files/Fig 8a).fig"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1109/TNS.2021.3049319"/>
        <dcat:byteSize>30745</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5105593/files/Fig 8b).fig"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1109/TNS.2021.3049319"/>
        <dcat:byteSize>23498</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5105593/files/Fig 9a).fig"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.1109/TNS.2021.3049319"/>
        <dcat:byteSize>17813</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5105593/files/Fig 9b).fig"/>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/H2020/777431/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">777431</dct:identifier>
    <dct:title>CompactLight</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/501100000780</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
18
35
views
downloads
Views 18
Downloads 35
Data volume 34.0 MB
Unique views 14
Unique downloads 14

Share

Cite as