Software Open Access

Topological Lattice Models with Constant Berry Curvature

Daniel Varjas; Ahmed Abouelkomsan; Kang Yang; Emil J. Bergholtz


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <controlfield tag="005">20210715134817.0</controlfield>
  <controlfield tag="001">5102818</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Stockholm University</subfield>
    <subfield code="a">Ahmed  Abouelkomsan</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Stockholm University</subfield>
    <subfield code="a">Kang  Yang</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Stockholm University</subfield>
    <subfield code="a">Emil  J.  Bergholtz</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">179530</subfield>
    <subfield code="z">md5:2b7bc72b187d634e79aa15ecd359aedc</subfield>
    <subfield code="u">https://zenodo.org/record/5102818/files/Constant_curvature.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-07-14</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">software</subfield>
    <subfield code="o">oai:zenodo.org:5102818</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Stockholm University</subfield>
    <subfield code="0">(orcid)0000-0002-3283-6182</subfield>
    <subfield code="a">Daniel Varjas</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Topological Lattice Models with Constant Berry Curvature</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Band geometry plays a substantial role in topological lattice models. The Berry curvature, which resembles the effect of magnetic field in reciprocal space, usually fluctuates throughout the Brillouin zone. Motivated by the analogy with Landau levels, constant Berry curvature has been suggested as an ideal condition for realizing fractional Chern insulators. Here we show that while the Berry curvature cannot be made constant in a topological two-band model, lattice models with three or more degrees of freedom per unit cell can support exactly constant Berry curvature. However, contrary to the intuitive expectation, we find that making the Berry curvature constant does not always improve the properties of bosonic fractional Chern insulator states. In fact, we show that an ``ideal flatband&amp;#39;&amp;#39; cannot have constant Berry curvature.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.5102817</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.5102818</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">software</subfield>
  </datafield>
</record>
219
59
views
downloads
All versions This version
Views 219219
Downloads 5959
Data volume 10.6 MB10.6 MB
Unique views 185185
Unique downloads 5959

Share

Cite as