Software Open Access

Topological Lattice Models with Constant Berry Curvature

Daniel Varjas; Ahmed Abouelkomsan; Kang Yang; Emil J. Bergholtz


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.5102818">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Software"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.5102818</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.5102818"/>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0002-3283-6182">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0002-3283-6182</dct:identifier>
        <foaf:name>Daniel Varjas</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Stockholm University</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Ahmed Abouelkomsan</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Stockholm University</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Kang Yang</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Stockholm University</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Emil J. Bergholtz</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Stockholm University</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Topological Lattice Models with Constant Berry Curvature</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2021</dct:issued>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2021-07-14</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/5102818"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/5102818</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.5102817"/>
    <dct:description>&lt;p&gt;Band geometry plays a substantial role in topological lattice models. The Berry curvature, which resembles the effect of magnetic field in reciprocal space, usually fluctuates throughout the Brillouin zone. Motivated by the analogy with Landau levels, constant Berry curvature has been suggested as an ideal condition for realizing fractional Chern insulators. Here we show that while the Berry curvature cannot be made constant in a topological two-band model, lattice models with three or more degrees of freedom per unit cell can support exactly constant Berry curvature. However, contrary to the intuitive expectation, we find that making the Berry curvature constant does not always improve the properties of bosonic fractional Chern insulator states. In fact, we show that an ``ideal flatband&amp;#39;&amp;#39; cannot have constant Berry curvature.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.5102818"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.5102818"/>
        <dcat:byteSize>179530</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5102818/files/Constant_curvature.zip"/>
        <dcat:mediaType>application/zip</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
218
58
views
downloads
All versions This version
Views 218218
Downloads 5858
Data volume 10.4 MB10.4 MB
Unique views 184184
Unique downloads 5858

Share

Cite as