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Abstract. Information extraction techniques may provide a better un-
derstanding of fundamental biomedical systems. For instance, under-
standing the two-component system used by bacteria is important for
infectious disease researchers to analyze the biomolecular mechanisms of
infection, virulence and resistance. A subtask of creating such structured
knowledge is entity disambiguation that establishes links by identifying
the correct semantic meaning from a set of candidate meanings to a text
fragment. This paper provides a short, concise overview of entity disam-
biguation in the biomedical domain, with a focus on annotated corpora
(e.g. CalbC), term disambiguation algorithms (e.g. abbreviation disam-
biguation) as well as gene and protein disambiguation algorithms (e.g.
inter-species gene name disambiguation). Finally, we provide some open
problems and future challenges that we expect future research will take
into account.
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1 Introduction

The amount of digital data, also called the digital universe, grows rapidly,
amounting to 4.4 Zetabytes in 20131. However, more than 90% of such infor-
mation (e.g. online news, social media communication, medical reports, govern-
ment documents) is transmitted through unstructured documents (estimate of
2011) [1], more suitably defined as non-standardized data [2].

The task of information extraction involves the processing of such unstruc-
tured documents to produce structured knowledge. A well-known example of a
structured knowledge base (KB) is DBpedia [3], wich semantically encodes the
knowledge available in Wikipedia. Structured knowledge representations open up
new application areas or improve results in existing areas. A prominent KB from
the e-Health domain is the Comparative Toxicogenomics Database (CTD) [4],
which is a high-quality data base for researching the influence of chemicals on
human health. This data base is manually curated and therefore restricted in its
coverage of the documents annotated by experts. Providing high-quality, auto-
matic methods for populating the KB from scientific articles would additionally

1 The digital universe of opportunities http://www.emc.com/collateral/

analyst-reports/idc-digital-universe-2014.pdf
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support the e-Health research community. The demand for automatic methods
is also reflected in the natural language processing challenges posed by vari-
ous initiatives, like the BioCreative initiative2 and the BioNLP shared tasks [5].
For instance, in the domain of biomedical research, the understanding of two-
component regulatory systems (TCSs), a mechanism widely used by bacteria to
sense and respond to the environment, can be facilitated [6]. TCSs are of par-
ticular interest for infectious disease researchers including virulence, response to
antibiotics, quorum sensing and bacterial cell attachment [7]. Hence, recognition
and assignment of proteins, molecules bacteria etc. to a unique identifier in a
KB in scientific publications is an important subtask.

This chapter gives an overview of the state-of-the art of linking unstructured
biomedical data to the Linked Data Cloud, with a special emphasis on biomedical
entity disambiguation.

The remainder of the chapter is structured as follows: Section 2 defines
the technical terms required for understanding the chapter. Section 3 gives a
clear definition of the problem that should be solved and illustrates why linking
biomedical entities to the cloud is a challenging task by examples. Section 4 then
provides the foundations for understanding the reviewed algorithms by exempli-
fying the data structures used by disambiguation methods. The state-of-the-art
review in section 5 is divided into four subsections:
– The state of the biomedical Linked Data Cloud is described in section 5.1,
– Section 5.2 presents annotated corpora for training linking algorithms,
– Algorithms for biomedical term disambiguation are reviewed in section 5.3,
– Algorithms for gene and protein disambiguation are presented in section 5.4.

The chapter concludes with an overview of open problems in section 6 and an
outlook on future work is given in section 7.

2 Glossary and Key Terms

Automatic Term Recognition (ATR) Recognition and linking of terms to
domain specific data bases [8], synonym to ↑ NED.

Disambiguation The process of linking a ↑ surface form to a ↑ URI.
Entity A modeled abstract or concrete object of the real world, for example a

specific gene. In the context of ↑ disambiguation also called label [9].
Knowledge Base (KB) describes a knowledge repository that stores facts

about the world. Knowledge bases can be coarsely classified into structured
and unstructured knowledge bases depending on the form of the data repre-
sentation. An orthogonal classification is specific for general-purpose knowl-
edge bases, depending on the type of knowledge stored.

Linked (Open) Data describes the concept of providing semantic information
for data sets. The goal is to support automatic sharing and linking pieces
of the data on a semantic level. The basic technologies for Linked Data are
↑ URIs and ↑ RDF. Linked Open Data (LOD) encompasses the idea that
these data sets should be openly accessible.

2 http://www.biocreative.org
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Linked (Open) Data Cloud subsumes the (openly accessible) data sets rep-
resented as ↑ Linked Data.

Named Entity A modeled, concrete object of the real world, referenced by
proper names or acronyms in the text. Originally introduced in the Message
Understanding Conference (MUC) Challenges, the commonly agreed types
were person, location and organization, later date and time, measures and
email addresses were added [10]. Depending on the application domain, other
domain-specific named entities exist. These are for instance names of drugs
or proteins in the biomedical domain.

Named Entity Recognition (NER) The process of identifying a ↑ named
entity, i.e. identifying that a surface form represents a named entity (but not
yet knowing, which entity exactly).

Named Entity Disambiguation (NED) The process of linking a ↑ surface
form representing a ↑ named entity to a unique meaning [11] .

Resource Description Framework (RDF) is a general concept for the se-
mantic description of resources. The building blocks of RDF are triplets
consisting of subject (the thing that is described), the object (to which it
is related) and a relation (specifying the relationship between subject and
object). Relations are unidirectional. All parts of a triplet are uniquely iden-
tifiable by the means of ↑ URIs.

Surface Form refers to the piece of textual information (words or phrases)
that should be linked to a semantic entity [12, 13]. Also called mention,
entity mention, mention occurrence, spot [9], or lemma [14].

Uniform Resource Identifier (URI) is a string of characters identifying a
resource. The most prominent example is the Uniform Resource Locator
(URL) used in the World Wide Web.

Word Sense Disambiguation (WSD) The process of linking a ↑ surface form
to a unique entry in a dictionary. In general, the linked ↑ surface forms are not
↑ entities. Consider for instance the different meanings of the word “mind”
(depending on the context it could be used as verb or noun and may have
different meanings in each grammatical form.)

3 Problem Statement

Entity annotators undertake a crucial processing step in producing structured
knowledge. They “ground” the underlying texts with respect to an adequate
semantic representation. The entity annotation task can be subdivided into the
following two sub steps:
– Entity Recognition: The identification of short-and-meaningful sequences

of terms, also called surface forms, which can be linked to entities in a catalog.
– Entity Disambiguation: The annotation of surface forms with unambigu-

ous identifiers (entities) drawn from a catalog.

Entity Recognition
Entity recognition forms the first step of creating entity annotations. It iden-
tifies proper nouns that can be linked to a semantic meaning. Proper nouns
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often exhibit structural ambiguity that complicates the correct identification.
For example, the components of “Victoria and Albert Museum and IBM and
Bell Laboratories” look identical. The term “and” is part of the name of the
museum in the first example, but a conjunction joining two computer company
names in the second [15]. The task of named entity recognition (NER) focuses
on identifying surface forms in a text which are the names of things, such as per-
son, organization, gene or protein names. Overall, (named) entity recognition
is a well studied research topic. State-of-the-art algorithms for generic knowl-
edge entities score ≈ 90% of F-measure [16], while accuracy of biomedical NER
strongly depends on the entities’ types (e.g. proteins, genes, diseases) [17].

Entity Disambiguation
The task of entity disambiguation establishes links between identified surface
forms and entities within a catalog (KB) and faces the problem of semantic am-
biguity [15]. Formally, entity disambiguation inherently involves resolving many-
to-many relationships. Multiple distinct surface forms may refer to the same
entity. Simultaneously, multiple identical surface forms may refer to distinct en-
tities [18]. Figure 1 shows a specific example of this relationship. We assume
a sentence containing the surface forms “Ford” and “CART” (depicted in the
yellow rectangle). Both surface forms may refer to different entities, e.g. Ford by
itself could be an actor (Harrison Ford), the 38th President of the United States
(Gerald Ford), an organization (Ford Motor Company) or a place (Ford Island).
In our context, we assume “Gerald Ford” to be the correct entity, which may be
expressed in several ways, e.g. “Gerald Rudolph Ford, Jr”. However, similar to
NER, the task of named entity disambiguation (NED) focuses on surface forms
constituting the names of special entity classes.

Fig. 1: Surface forms (bold) within a sentence (yellow rectangle) may refer to dif-
ferent entities (rectangles in the middle) depending on the context. Additionally,
an entity may be addressed by various surface forms (rectangles on the right).
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The ever-increasing publication rate of biomedical documents now means that
entity disambiguation in the biomedical domain is becoming more and more
important. Biomedical NED is constrained to biomedical entities only, but is
extremely challenging [19] since a surface form

1. could refer to another type of biomedical entity, such as a protein or pheno-
type, e.g. the mouse gene “hair loss”.

2. could be other types of concepts in closely related domains, such as the
clinical field, e.g. the mouse gene “diabetes”.

3. could be the same as common English words, e.g. fly genes “can” and “lie”.

4. could refer to several, different genetic entities, either from the same or from
other species, e.g. cow or chicken.

In biomedical entity disambiguation, genes and gene products (i.e. proteins) form
an important class of entities. To map surface forms of these entity classes to
an entity within a KB, it is important to identify what organisms (species) the
genes and proteins belong to, and on what species the experiments are carried
out to understand particular biological phenomena. There are dozens of species
commonly used in biological studies, such as Escherichia coli, Caenorhabditis ele-
gans, Drosophila melanogaster, Homo sapiens and hundreds more are frequently
mentioned in biological research papers. For example, without context, “tumor
protein p53” may associate to over 100 proteins across 23 species3. To identify
the proteins (i.e. the underlined terms) in the following sentence, knowing the
“focus” species of the article is not sufficient, as they belong to three different
species: human, mouse and rat.

The amounts of human and mouse CD200R-CD4d3+4 and rCD4d3+4 protein
on the microarray spots were similar ...

The authors of [19] investigated the extent of the ambiguity problem in the
biomedical domain. They obtained genes from 21 species and quantified nam-
ing ambiguities within and across species, with English words and with medical
terms. The results revealed that official gene symbols display negligible ambi-
guity within a specific species (0.02% regarding uppercase letters) and a high
ambiguity across-species (14.20%). Additionally, the results showed a moderate
ambiguity rate with general English words (0.57%) and medical terms (1.01%).
The analysis of correct gene disambiguation results within abstracts of biomed-
ical research paper also showed a very high number of ambiguous genes across
species [19] (85.1%).

Overall biomedical NED is a challenging task and thus has attained much
attention in research in the last decade.

3 Querying RefSeq database (http://www.ncbi.nlm.nih.gov/refseq/). The number
of species was manually counted
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4 Entity Representation

A crucial factor for creating a disambiguation system is the way entities are
represented within a KB. Generally an entity can be defined intensionally, i.e.
through a set of describing properties, or extensionally, i.e. through instances and
usage in documents [20]. In the following we differentiate more precisely between
these representations and give examples of how entities might be represented
within disambiguation KBs in practice.

4.1 Intensional Description

An intensional definition of an entity can be understood as a thesaurus or log-
ical representation, as it is provided by Linked Open Data repositories. In the
context of entity disambiguation, KBs comprising intensionally defined entities
are referred to as entity-centric KBs [21]. Formally, an entity-centric KB can be
described as

Kbent = {e0, ..., en|ei ∈ E,n ∈ N} (1)

The set of all entities available in the entity-centric KB Kbent is denoted as E,
with ei being a single entity [22]. All entities ei ∈ Kbent usually provide a unique
primary key ID which combines the name of the knowledge source as well as
its identifier in the knowledge source. Additionally, a variable number of fields k
contain domain-independent attributes, e.g. descriptions, and domain-dependent
information, e.g. the sequence length of genes. Formally, such an entity can be
denoted as

ei = (ID, F ield1, ..., F ieldk) (2)

Table 1 shows a specific example of how the entity “Phenylalanyl-tRNA–protein
transferase” might be represented in an entity-centric KB. The entity contains
standard attributes, i.e, name, synonyms, description, link to web resource, type,
as well as occurrence information. More specifically, all referenced surface forms
for this entity and the respective amount of occurrences with this surface form
are stored in Occurrences. The field Cooccurrences contains surface forms of
entities that appeared near the described entity in any text and the amount of
appearances of the respective surface form in the context range (i.e. 300 words).

4.2 Extensional Description

An extensional entity definition resembles information on the usage context of an
entity. For instance, natural language text documents annotated with entities can
be used as such usage context [21]. KBs containing extensional entity definition
are referred to as document-centric KBs [21]. Formally, a document-centric KB
is defined as

Kbdoc = {d0, ..., dn|di ∈ D,n ∈ N} (3)

An entry di in a document-centric KB Kbdoc consists of the document content
representing a text string and a list of annotations of surface forms tlei , with
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Table 1: Example of an entity-centric KB entry

Field Content

ID UNQ9A741
Name Phenylalanyl-tRNA–protein transferase
Synonyms Leucyltransferase
Description Functions in the N-end rule pathway of protein degradation where

it conjugates Leu, Phe and, less efficiently, Met from aminoacyl-
tRNAs to the N-termini of proteins...

Mainlink http://www.uniprot.org/uniprot/Q9A741
Type Caulobacter
Occurrences aat:::3
Co-
Occurrences

substrate:::3, Leu:::6, Phe:::6

l denoting the lth annotation in the document. Annotated surface forms are
described by their position in the document and a list of their entity references.
An entry in a document-centric KB is denoted as

di = (Document, {(Start, End, {ID}), ...}) (4)

Table 2 shows an example of a biomedical document containing the surface form
”‘Myeloma”’ in a document-centric KB. The document’s content is subdivided in
title and titleandtext, which is a concatenation of the document’s title and main
content. Furthermore, all available annotations (and its respective properties)
are stored in the field Annotations. The field ID depicts a unique document
identifier.

Table 2: Example of a document-centric KB entry

Field Content

ID 174996
Title Antibody therapy for treatment of multiple myeloma
Abstract Monoclonal antibody therapy antibody therapy has emerged as

a viable treatment option for patients with lymphoma and some
leukemias. It is now beginning to be...

TitleAndAbs Antibody therapy for treatment of multiple myeloma. Monoclonal
antibody therapy antibody therapy has emerged as a viable treat-
ment option for patients with...

Keywords Myeloma::43::50::diso:umls:C0026764:T191:diso
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5 State-of-the-Art

In this section the state-of-the-art is reviewed along three dimensions. First, we
review the state of the biomedical linked data cloud in section 5.1. Second, we
describe available annotated corpora for training algorithms in section 5.2. Third,
we review the algorithms for for biomedical term disambiguation in section 5.3
and for gene and protein disambiguation in section 5.4. We note that we do not
describe and review text (pre-)processing steps (e.g. tokenization, normalization,
stemming) which are necessary for entity recognition and disambiguation. An
overview of relevant steps for text processing in the biomedical domain can be
found in [23].

5.1 The Biomedical Linked Data Cloud

According to the “State of the LOD Cloud 2014”4 the Linked Open Data cloud
comprises 1014 data sets, 83 (8.19%) belong to the life sciences domain as of
April 2014. Data sets use different vocabularies, proprietary or non-proprietary.
Proprietary vocabularies are only used by one data set and thus are not useful
for interlinking differently linked data repositories. Non-proprietary vocabularies
are used by at least two data sets and comprise only 41.76% of all encountered
649 vocabularies. In terms of data sets, 23.17% (241) data sets use proprietary
vocabularies, but also nearly all of the data sets (99.87%) use non-proprietary
vocabularies. In the life sciences this amount is slightly higher. 35 different pro-
prietary vocabularies are used in 26 data sets (these amount to 29.21% of all
life sciences data sets). Only 28.57% of these data sets are fully linkable to other
data sets, i.e. can be fully interpreted by automatic mechanisms. 65.71% of these
data sets are not linkable at all.

5.2 Annotated Corpora

This section presents an overview of annotated corpora for biomedical entity
disambiguation. We omitted corpora that were not, or are no longer publicly
available.

GENIA Corpus: The GENIA corpus [24], released in 2003, contains ≈ 2000
MEDLINE abstracts from the domain of molecular biology. The corpus is freely
available for download5. The MEDLINE abstracts were collected by querying
PubMed for the three MeSH terms “human”, “blood cells”, and “transcription
factors“. They were syntactically and semantically annotated, resulting in six
different sub-corpora corresponding to the specific annotations:
– Part-of-Speech annotation subcorpus,
– Constituency (phrase structure) syntactic annotation subcorpus,
– Term annotation subcorpus,

4 http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
5 http://www.nactem.ac.uk/genia/genia-corpus
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– Event annotation subcorpus,
– Relation annotation subcorpus,
– Coreference annotation subcorpus.

Linguistic structures are annotated with biological terms from the GENIA on-
tology in the term annotation subcorpus, which represents the corpus for entity
disambiguation. Table 3 provides an overview of the GENIE term annotation
subcorpus.

Table 3: Statistics of the GENIA corpus (term annotations)

GENIA

Documents 2,000
Document Type MEDLINE abstract
Surface Forms 89,862
Release Date 2003 (version 3.0)

BioCreative corpora: The BioCreative (Critical Assessment of Information
Extraction in Biology) community has released various annotated corpora since
2004. The data sets are freely available for non-commercial purposes6.

GM Corpus (BioCreative I and II) The BioCreative I data set [25] for the
Gene Mention (GM) task was released in 2005 and consists of sentences from
MEDLINE abstracts annotated with gene mentions. The provided sentences
have already been tokenized. The BioCreative II data set [26] is an extended
and refined version of the BioCreative I data set and was released in 2008. The
changes include an addition of 5000 sentences, a review of the annotations with ≈
13% changes and linkage of the gene mentions to either the GENE or ALTGENE
KB. Further, in the BioCreative II data set the sentences were not tokenized a-
priori. An overview of the basic statistics for the BioCreative I+II data sets can
be found in table 4.

Table 4: Statistics of the GM I and II corpus (aggregated training, test and
development set)

GM I GM II

Documents 1,500 2,000
Document Type MEDLINE abstract MEDLINE Abstract
Surface Forms 1,800 44,500
Release Date 2005 2008

ChemDNER Corpus (BioCreative IV): The ChemDNER (Chemical and Drug
Named Entity Recognition) corpus [27], released by the BioCreative community

6 http://www.biocreative.org/resources/
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in 2013 (part of BioCreative IV), contains PubMed abstracts manually anno-
tated with chemical compounds and drugs. Each abstract was annoated by at
least two experts with an overall inter-annotater agreement of 91%, thus the
corpus can be considered a gold standard for chemical NER. Table 5 provides a
summary statistics of the corpus with all values aggregated over training, test
and development set. More details on corpus construction and statistic can be
found in [27].

Table 5: Statistics of the ChemDNER corpus (aggregated training, test and
development set)

ChemDNER

Documents 10,000
Document Type PubMed abstract
Surface Forms 84,355
Entities 19,805
Release Date 2013

BC4GO Corpus (BioCreative IV): The Gene Ontology (GO) corpus [28] was
released by the BioCreative community in 2013 as part of the BioCreative IV
challenge. The corpus consists of 200 annotated full-text articles from PMC. The
task associated with this corpus involves extracting gene function terms and the
associated evidence sentences. Table 6 provides an overview of the corpus.

Table 6: Statistics of the BC4GO corpus (aggregated training, test and develop-
ment set)

BC4GO

Documents 200
Document Type PMC full-texts
Gene mentions 5,162
Entities (Genes) 665
GO term mentions 5,275
Entities (GO terms) 1,311
Release Date 2013

CalbC corpus: The CalbC (Collaborative Annotation of a Large Biomedical
Corpus) corpus is a very large, community-wide shared text corpus annotated
with biomedical entity references [29]. CalbC represents a silver standard corpus
which results from the harmonization of automatically generated annotations
and is freely accessible7. The data set is released in 3 different sizes: small (Cal-
bCSmall), big (CalbCBig) and pilot, with the former two being the most widely

7 http://www.calbc.eu/
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used. Table 7 provides an overview of the basic properties of CalbCSmall and
CalbCBig. A comparison regarding the overlap of entities within both corpora

Table 7: Statistics of the CalbCSmall and CalbCBig corpora

CalbCSmall CalbCBig

Documents 174,999 714,282
Document Type MEDLINE abstract MEDLINE abstract
Surface Forms 2,548,900 10,304,172
Unique Surface Forms 50,725 101,439
Entities 37,309,221 96,526,575
Unique Entities 453,352 308,644
Used Unique Entities 265,532 228,744
Namespaces 14 16
Release Date 2011 2011

shows that a very high percentage of entities occurs in both data sets. Hence,
there are few entities which occur in CalbCBig but are not present in the small
corpus. In contrast to other disambiguation corpora like Dbpedia, a surface form
may be linked to more than one entity resource per annotation. Due to a com-
prehensive taxonomy and classification system a surface form provides 9 entity
annotations on average. Figure 2 presents an overview of the distribution of
surface forms and their corresponding entities. The histogram axis showing the

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 5 10 15 20 25 30 35 40

#S
ur
fa
ce

fo
rm

s

#Entities

Counts
Aggregated

Fig. 2: Distribution of surface forms and their corresponding entities

number of entities is truncated at 40 entities due to very few existing surface
forms which contain a lot of different meanings (maximum 9895). Nearly half of
all surface forms may attain between 2 and 7 different entities. The other half
of surface forms attains up to 9895 different entity meanings. Figure 3 shows
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an overview of the distribution of surface forms over entities. More than 10,000
different surface forms address general entities like “kinase” or “protein”.
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Fig. 3: Number of entity annotations (Only entities annotated for more than
2000 different entities are shown.)

CRAFT Corpus: The CRAFT (Colorado richly annotated full text) cor-
pus [30] is an annotated corpus consisting of 67 full-text journal articles from
the biomedical domain. The corpus contains ≈ 100,000 annotations from the
biomedical domain, linking it to 7 different repositories (Chemical Entities of
Biological Interest, Cell Ontology, Entrez Gene, Gene Ontology, NCBI Taxon-
omy, Protein Ontology and Sequence Ontology). Table 8 provides an overview
of the data set. The corpus is licenced under the Creative Commons Attribution
3.0 license (CC BY) and is available online8.

Table 8: Statistics of the CRAFT corpus

CRAFT

Documents 67
Document Type PubMed full-texts
Surface Forms ≈ 100,000
Namespaces 7
Unique Entities 4,319
Release Date 2012

BioNLP Shared Tasks corpera: The BioNLP Shared Tasks corpora origi-
nates from the GENIA corpus (see above). In 2004, 2009 and 2011, the initiative
covering different natural language tasks for the biomedical domain released sev-
eral corpora. The data sets are available online9. Here, we describe subcorpora
from the release in 2011 [6], which is also publicly available10.

8 http://bionlp-corpora.sourceforge.net/CRAFT/
9 http://www.nactem.ac.uk/genia/shared-tasks

10 http://2011.bionlp-st.org/
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EPI Corpus: The EPI corpus (Epigenetics and Post-translational Modifications)
was crafted to research automatic extraction of events related to epigenetic
changes. The corpus consists of 1,200 MEDLINE abstracts, annotated with en-
tities representing proteins or genes. Additional annotations are made for events
(e.g. hydroxylation, DNA methylation), and event modifications (e.g. catalysis,
positive regulation, negation or speculation). An overview of the EPI corpus is
presented in table 9.

Table 9: Statistics of the EPI corpus from the BioNLP Shared Task (aggregated
training, test and development set)

EPI

Documents 1,200
Document Type PubMed abstract
Surface Forms (Protein, Gene) 15,190
Surface Forms (Event) 3,714
Surface Form (Modification) 369
Release Date 2011

ID Corpus: The ID (infectious diseases) corpus was designed to study the molec-
ular mechanism of infectious diseases. It consists of 30 full-text documents from
the PMC data base. The documents are annotated with five types of entities
(protein, two-component system, regulon-operon, chemical and organism), event
types (e.g. for example gene expression, binding, regulation) and modifications.
The latter indicates whether a statement is a speculation or a negation. Table 10
provides an overview of the ID corpus.

Table 10: Statistics of the ID corpus from the BioNLP shared Task (aggregated
training, test and development set)

ID

Documents 30
Document Type PMC full-texts
Surface Forms (Entity) 12,740
Surface Forms (Event) 3,714
Surface Form (Modification) 369
Release Date 2011

CDT Corpus: The Comparative Toxicogenomic Database (CTD) [4] is a pub-
licly available database11 containing the following types of manually curated
annotations:
– Chemical-gene interactions,

11 http://ctdbase.org/
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– Chemical-disease associations,
– Gene-disease associations,
– Chemical-phenotype associations.

The manual data collection started in 2004 and is constantly updated. An
overview of the data sets as of July 2014 can be found in table 11.

Table 11: Statistics of the CDT corpus (figures correspond to the version from
July 2014)

CDT

Documents 109,701
Document Type PubMed full-texts
Chemicals 13,446
Diseases 6,347
Genes 36,393
Release Date silent releases, constantly updated

5.3 Biomedical Term Disambiguation

Biomedical term disambiguation focuses on disambiguating all classes of biomed-
ical entities (e.g. medical terms, abbreviations, genes, chemicals). Official biomed-
ical symbols display only a moderate degree of ambiguities with general English
words, medical terms and concepts [19]. Thus, the number of works resolving
these ambiguities is limited.

String Matching Algorithms
String Matching algorithms are able to map case-sensitive surface forms to the
respective KB entries. The work by Tsuruoka et al. [31] focused on learning a
string similarity measure from a dictionary with logistic regression. The experi-
ments were conducted on several large-scale gene and protein name dictionaries.
Results showed that a logistic regression-based similarity measure outperforms
existing similarity measures like Hidden Markov Model [32], SoftTFIDF [33],
Jaro-Winkler [34] and Levenshtein in dictionary look-up tasks.

Another work from Rudniy et al. [35] describes the problem of mapping
entities in biomedical data to the UMLS Metathesaurus. The work introduces
the Longest Approximately Common Prefix (LACP) method as an algorithm for
approximate string matching that runs in linear time. The authors compare the
LACP method to nine other well-known string matching algorithms (e.g. TF-
IDF [36], Jaro-Winkler [34], Needleman-Wunsch [37]) in terms of precision and
performance. As a result, LACP outperforms all nine string similarity methods
in both disciplines, performance and accuracy. It attains the best F1 values (up
to 92%) when evaluated on three out of the four data sets.

A major disadvantage of these approaches is the non-availability of disam-
biguation techniques. In other words, if surface forms are ambiguous these algo-
rithms are hardly able to determine the potential entity candidate.
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Abbreviation Disambiguation
There are a number of systems that have been developed to map biomedical
abbreviations to appropriate entities. Methods for mapping abbreviations to full
forms fall into two broad categories [38]: abbreviations are linked to entities
with the help of pattern or rules when the entities’ full forms appear nearby
in the text [39, 40], or statistical disambiguation methods choose entities for an
abbreviation based on the context the abbreviation occurs in [38,41].

The intention of the AbbRe system [39] (Abbreviation Recognition and Ex-
traction) was to map abbreviations to entities when the entities’ full forms are
explicitly defined in biomedical full-text articles. AbbRE operates through a set
of manually annotated rules assigning matches between letters in the abbrevia-
tions and words in the full form. AbbRE was evaluated in full-text biomedical
articles and found to have 70% recall and 95% precision.

Fig. 4: Distribution (from eleven million MED-
LINE records) of the numbers of abbrevia-
tions paired with different numbers of full
forms [38].

Yu et al. [38] proposed the
first model that resolves the
problem of abbreviation ambi-
guity in full-text journal ar-
ticles. The approach is built
upon the earlier work AbbRe
and presents a semi-supervised
method that applies MEDLINE
as a knowledge source for dis-
ambiguating abbreviations and
acronyms in full-text biomedi-
cal journal articles. The authors
trained supervised learning al-
gorithms (i.e. Naive Bayes and
Support Vector Machines) on
11 million MEDLINE abstracts
which were annotated with Ab-
bRe first. Figure 4 shows the
distribution of the numbers of
abbreviations paired with different numbers of full forms occurring in the anno-
tated MEDLINE abstracts. The abbreviations “or” and “ca” correspond to the
largest numbers of different full forms. Overall, the authors report up to 92%
precision when disambiguating biomedical abbreviations.

General Biomedical Term Disambiguation
Few works focused on general biomedical term disambiguation, which comprises
all kinds of biomedical surface forms that can be linked to an entity (i.e. medical
terms, gene names, abbreviations).

The work of Chen et al. [42] presents a simple method for biomedical term
disambiguation, which can be viewed as a context-based classification approach.
Instead of directly using all of a words’ surrounding words, the authors only se-
lect certain words with high “discriminating” capabilities as features. By using
this method, unimportant surrounding words are discarded to improve disam-
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biguation quality. The top-n influential context terms are used as feature vector.
These feature vectors serve as input to a classification method for creating clas-
sifiers (i.e. Support Vector Machine, Naive Bayes, Ripper and C4.5), which map
each surface form to an entity in the KB. A major contribution of this method
is its unique way of selecting the features of the ambiguous terms and building
feature vectors.

Zwicklbauer et al. [22] investigated biomedical entity disambiguation with
entity- and document-centric KBs. The authors state that document-centric KBs
outperform laboriously constructed entity-centric KBs if an adequate amount
of annotations is available. In this context, they investigated to which degree
disambiguation results depend on the quality of entity repositories [22]. They
showed that the quality of disambiguation results with an entity-centric KB is
distinguished from the use of different repositories and biomedical subdomains
(e.g. UMLS, Uniprot, Entrez Gene). A major limitation is the non-use of machine
learning algorithms. Instead, the authors apply standard approaches like the
Vector Space Model [43] with TF-IDF [36] and BM-25 [44].

Zwicklbauer et al. [21] extended their work with a Learning To Rank ap-
proach [45] and provide a systematic evaluation of entity disambiguation for
special domain properties with entities taken from the LOD cloud. They focus
on evaluating three crucial problems of these special domain characteristics:

1. Entity usage context: the way entities are described (i.e. entity-centric and
document-centric KB)

2. User data: quantity and quality of already disambiguated entities
3. Quantity and heterogeneity of entities to disambiguate

The evaluation reveals that the amount of user data significantly influences dis-
ambiguation results, no matter what entity context is used. In this context they
show that disambiguation results are robust against a moderate amount of noise
in user data. Additionally, they indicate that the performance decreases with
large-scale and heterogeneous KBs strongly depend on the underlying entity con-
text. Finally, the authors suggest a combination of disambiguation approaches
that use different entity contexts to improve the overall results as well as to
increase the robustness against large-scale and heterogeneous KBs.

5.4 Gene and Protein Disambiguation

A bulk of works specialized on disambiguating genes and proteins, which consti-
tutes a challenging task due to a high degree of ambiguous gene/protein mentions
across species [19]. The goal of gene and protein disambiguation, a subtask of
the Gene Normalization (GN) process (also comprises gene and protein recogni-
tion [46]), is to determine the unique identifiers of genes and proteins mentioned
in scientific literature. A unique identifier comprises a unique species id as well
as a unique id for the respective gene or protein. Basically, the gene and pro-
tein disambiguation (in the following denoted as gene disambiguation) faces the
following ambiguity problems:
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1. Gene-Protein name ambiguity: a surface form may refer either to a gene or
a protein, but is unambiguous within the set of all genes or proteins across
all species.

2. Intra-species gene name ambiguity: a surface form could be the identifier
of several genes or proteins belonging to a specific species when the species
identifier is provided.

3. Inter-species gene name ambiguity: a surface form could be the identifier of
several genes or proteins across species.

In the following we describe the most important works addressing the respective
ambiguities.

5.4.1 Gene-Protein Name Ambiguity
The simplest form of ambiguity occurs if a surface form either refers to a gene or
a protein while being unambiguous within the set of all genes or proteins across
all species. This assumption can be modeled as a binary classification problem
which classifies the surface form into the gene or protein class.

While recent work do not explicitly distinguish between both classes, the au-
thors of [47] conducted experiments on how standard classification approaches
like Naive Bayes and C4.5 [48] perform on this disambiguation task. When Naive
Bayes was combined with a well-chosen smoothing function, it attained ≈ 80%
accuracy in the classification task on different data sets. Ginter et al. [49] in-
troduced a new classifier based on ordering and weighting the feature vectors
obtained from word counts and work co-occurrence in the text. An additional
improvement was attained after weighting by positions of the words in the con-
text of annotated article abstracts downloaded from the PubMed [50] database.
Pahikkala et al. [51] further improved accuracy by incorporating a weighting
scheme based on distances of context words into a conventional Support Vector
Machine.

Overall gene-protein classification is quite simple and thus attains accuracy
values between 85% and 90% with standard approaches.

5.4.2 Intra-species Gene Name Ambiguity
It is more likely that a surface form could be the identifier of several genes or
proteins belonging to a specific species when the species identifier is provided.
Algorithms that resolve an intra-species gene name ambiguity do not explicitly
distinguish between the gene and protein class. The BioCreative I and II chal-
lenges [46] were conducted to map genes from the EntrezGene KB when specific
sets of species are provided. Focusing on gene recognition in text and gene disam-
biguation (and also on protein-protein interactions), the BioCreative II dataset
is commonly used for evaluation purpose of intra-species gene-protein name am-
biguity. However, by also including the gene recognition task, the overall result
values of the evaluated systems are not applicable to the disambiguation task in
general.
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Semantic Approaches
Xu et al. [52] proposed a gene profile-based approach which examines gene name
disambiguation under several idealistic assumptions: 1. Perfect gene mentions are
assumed with most being restricted to short string gene symbols, and 2. among
the possible gene candidates in their disambiguation task one candidate is al-
ways the correct answer, which ignores the fact that an apparent gene mention
in a text may not denote a gene at all [53]. However, in their approach, they
extract a profile with different types of information (e.g. context terms, context
ontological semantic concepts) from each gene from already annotated knowl-
edge sources. Their disambiguation approach describes an information retrieval
approach which ranks the similarity scores between the context of the surface
form and the candidate gene profiles. A look at their results, however, reveals
that a plain bag-of-words approach performs almost equally well.

A complex semantic disambiguation approach was introduced by Hakenberg
et al. [54,55]. They identify genes by using background knowledge from Entrez-
Gene, UniProt and GeneOnthology (GO). For each candidate ID that is assigned
to a gene surface form and thus to a text, the approach tries to find all informa-
tion in the text and picks the ID with the highest likelihood. To calculate the
similarity based on GO terms, GO terms in the surface form context are com-
pared with gene candidate GO terms. For each potential tuple taken from the
two sets, the system calculates a distance of the terms in the ontology tree. These
distances yield a similarity measure for two terms, even if they do not belong
to the same sub-branch or are immediate parents/children of each other. The
distance takes the shortest path via the lowest common ancestors into account,
as well as the depth of this lowest common ancestor in the overall hierarchy. The
distances for the closest terms from each set then define a similarity between the
gene and the text [55]. The approach currently achieves an F-measure of 86.4%
on the BioCreative II gene normalization data and, thus, belongs to the best
intra-species gene name disambiguation systems.

Machine Learning Approaches
There are also a few machine-learning approaches for intra-species gene ambi-
guity. One system is Azure, which is able to automatically assign gene names
to their LocusLink12 ID in previously unseen MEDLINE abstracts [56]. Azure
contains a supervised learning approach that covers tens of thousands of genes
and proteins. Apparently, it is possible to achieve high quality gene disambigua-
tion using scalable automated techniques. Wermter et al. [53] developed GeNo,
a highly competitive system for gene name normalization. The authors apply a
Maximum Entropy string similarity measure for candidate retrieval and calcu-
late a semantic similarity score for checking semantic matches. Additionally, the
authors show that (i) machine learning methods perform superiorly when inte-
grated with publicly available training data in a well-designed manner and (ii)
a simple bag-of-words semantic approach to biological background knowledge
performs as well as more complex semantic disambiguation [53].

12 http://www.ncbi.nlm.nih.gov/Web/Newsltr/Summer99/locus.html
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Major disadvantages for machine learning and profile-based approaches are: As
new biological entities are discovered very quickly, there may be no mention in
the previous existing literature for that sense or for that symbol. A partial solu-
tion is to perform updates to the profiles and machine learning models regularly.

5.4.3 Inter-species Gene Name Ambiguity
In inter-species gene name ambiguity tasks the species information for genes is
not provided. Hence, a surface form could be the identifier of several genes or
proteins across species. The disambiguation task requires the disambiguation of
species first, and the resolution of the intra species gene name ambiguity in the
second step (cf. section 5.4.2). Species disambiguation faces the problem that
multiple species assignments may be correct and that therefore multiple cor-
rect entities may exist. Hence, determining the parameter of how many results
should be retrieved for each disambiguation task is a challenge. If not explic-
itly mentioned the proposed algorithms return a single species with the most
likelihood.

Rule-Based Approaches
A simple approach to link surface forms to a species is by looking for species
words in the context. More specifically, several works use one of the following
rules as a baseline system [57]:

1. Previous species word: if the word preceding an entity is a species word,
assign the species ID indicated by that word to the entity.

2. Species word in the same sentence: if a species word and an entity appear in
the same sentence, assign its species ID to the entity. When more than one
species word co-occurs in the sentence, priority is given to the species word
to the entity’s left with the smallest distance. If all species words occur to
the right of the entity, take the nearest one.

3. Majority vote: assign the most frequently occurring species ID in the docu-
ment to all entity mentions.

A well-known system to detect the species of genes in scientific publications is
GNAT and was proposed by Hakenberg et al. [55]. Their approach relies on
a multi-stage procedure with descending reliability to assign species to genes.
For instance, a gene and a species could occur in the same phrase, including
enumerations: “rat and murine Eif4g1”. If no rule can be applied, the approach
checks the abstract for general mentions of kingdoms, classes, etc. Despite ap-
plying simple rules, the system obtained one of the best performance for the
Gene Normalization task in BioCreative II.

A recent approach [58] defines a three-step species disambiguation system.
First, a preprocessing step including tokenization and cue word extraction for
each gene surface form is performed. Second, the algorithm estimates focus
species with the proposed EF-AISF coefficient, the entity frequency-augmented
invert species frequency, to calculate the relevance between the cue words of a
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surface form and species. The species with the highest correlation coefficient is
chosen as the probable focus species. Third, an appropriate species is assigned to
each gene surface form with the help of the introduced Relational Guide Factor
which enhances the capability of species assignment. An evaluation shows that
the usage of EF-AISF may significantly outperform other (machine-learning)
approaches like SVMs in the task of entity species disambiguation.

Wang et al. [59] introduced and compared a number of rule-based and machine-
learning based approaches to resolve species ambiguity in mentions of biomedical
named entities, and demonstrated that a hybrid method achieves the best overall
accuracy at 71.7%, as tested on the gold-standard ITI-TXM corpora [60]. The
authors performed multiple species assignments and investigated the average
rank of the first correct species annotation.

They also introduced a hybrid species information tagging system (a combi-
nation between rule-based and machine learning approach), which improved the
rule-based term identification system by up to 10% [59].

Machine Learning Approaches
The authors of [61] describe a generic approach to disambiguate specific entity
classes (e.g. species). Instead of classifying each individual occurrence of an en-
tity, it classifies pair-wise relations between the surface form in question and the
cue words in its adjacent context, where each cue word is assumed to bear a
semantic class (e.g. a specific species). If a cue word features a “positive” rela-
tion with the surface form, the corresponding semantic tag of the cue word is
assigned to the surface form. While an individual surface form may belong to
a large number of semantic classes, a relation can only take one of two values:
positive or negative, hence transforming a complex multi-classification problem
into a less complicated binary classification task. The binary classification prob-
lem was solved with Support Vector Machines. One drawback of the relation
classification systems is that they cannot cover all surface forms but only the
ones with informative keywords co-occurring in the same sentence. The authors
overcame that drawback by using spreading rules [61].

The approach by Harmston et al. [62] transforms a MEDLINE record into a
mixture of adjacency matrices. By performing a random walk over the resulting
graph, the authors are able to perform multi-class supervised classification, al-
lowing the assignment of taxonomy identifiers to individual gene mentions. This
method does not require training data for all potential classes in order to achieve
high performance and does not only perform classification but also provides a
probability, which serves to quantify the certainty attached to a classification.
This species disambiguation approach shows significant improvements over the
relation method proposed by Wang et al. [61]. Once the reliable corpora are in
place, the approach can be applied in an automatic fashion without any further
user intervention, which will greatly aid its employment in the context of novel
organisms [62].

Wang et al. [57] compared a parser-based (e.g. Stanford parser), a super-
vised multi-classification [59] and a relation-based [61] species disambiguation
approach. Promising results are obtained by training a machine learning model
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on syntactic parse trees, which is then used to decide whether an entity be-
longs to the model organism denoted by a neighboring species-indicating word
(e.g. yeast). The parser-based approaches are also compared with a supervised
classification method and results indicate that the former are a more favorable
choice when domain portability is of concern. The best overall performance was
obtained by combining the strengths of a syntactic parser (i.e. ENJU-Genia),
a relation classification model, and a supervised classification model. However,
their method does not function well if no species term co-occurs with the gene
mentions in a sentence. Similarly, their method cannot handle the articles that
have no species mentions.

A comparison between rule-based and machine learning approaches shows that
machine learning approaches attain satisfying results. However, the availability
of training data is often limited, and the available data sets tend to be imbal-
anced and, in some cases, heterogeneous.

6 Open Problems

This chapter lists the open problems for linking biomedical data to the cloud,
categorized into problems with the data (section 6.1) and algorithm-related prob-
lems (section 6.2).

6.1 Dataset Related Problems

Annotated corpora for training linking algorithms contain surface forms linked to
entities from different KBs and namespaces (e.g. Uniprot, UMLS, SnomedCT).
This implies that algorithms trained on one specific corpus with its respective
KBs are only able to link to these KBs. Depending on the application scenario,
however, references to different KBs might be required. Although the Semantic
Web standard accounts for connections between two repositories in the Linked
Data Cloud by special types of relations, e.g. the owl:sameAs relation, the ma-
jority of the biomedical linked data repositories (65.71%) is not linkable to other
repositories (see section 5.1). Thus, an open problem is the missing links between
the various available repositories, also termed ontology alignment. High-quality
automatic ontology alignment is still an open problem, while semi-automatic
approaches seem to yield promising results [63], but require considerable human
effort.

Further problems root in the missing provenance and licensing information
of the Linked Data Cloud repositories. As described in section 5.1 for the life
sciences domain, only 3.37% of the data sets provide licensing information in
RDF and pose a challenge for fully automatic exploitation of these KBs. Appli-
cations using Linked Data repositories rely on the actuality and correctness of
the represented knowledge, but only the minority of the life sciences data sets
in the Linked Data Cloud (23.60%) contain provenance information.
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6.2 Algorithm Related Problems

Analyzing available disambiguation algorithms in the biomedical domain shows
three major, important and open problems which have been addressed insuffi-
ciently so far.

Inter-domain Entity Disambiguation
Scientific literature is being published in various domains (e.g. biomedical, com-
puter science domain). Consequently, these documents comprise entities from
different domains. Generally, existing disambiguation systems are able to disam-
biguate entities belonging to a specific domain, either generic entities as available
in Wikipedia or special knowledge entities (e.g. biomedical entities). Zwicklbauer
et al. [21] showed that large-scale and heterogeneous entity KBs may mitigate
disambiguation results significantly. An open problem is how different entity
repositories from different domains can be combined while providing reliable
disambiguation results.

Supervised or Unsupervised Classification
Disambiguation tasks (i.e. intra-species and inter-species gene name ambiguity)
may be interpreted as classification tasks. Thus, many approaches rely on super-
vised classification, which needs a non-negligible amount of training data. The
availability of training data is often limited, and the available data sets tend to
be imbalanced and, in some cases, heterogeneous [61]. Another problem of mak-
ing extensive use of training data is that new biological entities are discovered
very quickly. There may be no surface form in the previous existing literature for
that sense or for that symbol [52]. Unsupervised or rule-based algorithms are ei-
ther not available or do not provide similar results as supervised algorithms [59].
The question remains how algorithms provide reliable results despite requiring
less or no training data.

Multiple Species Assignments
As shown in section 3, a surface form of genes or proteins may belong to sev-
eral different species (e.g. the proteins in sentence “human and mouse CD200R-
CD4d3+4 and rCD4d3+4 protein” belong to the species human, mouse and rat).
Hence, these surface forms refer to multiple entities. Existing algorithms usually
extract the corresponding species providing the highest score. Furthermore, a
static threshold often denotes the top-n relevant species to be extracted. How-
ever, existing approaches lack algorithms to investigate how many and which
species belong to surface forms of genes or proteins.

7 Conclusion and Outlook on Future Work

Biomedical entity disambiguation has benefited from substantial interest from
researchers and from practical needs of several domains (e.g. infectious disease
researchers), especially in the last ten years. In this work we provide an overview
of biomedical entity disambiguation, with a special focus on annotated corpora,
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term disambiguation algorithms as well as gene and protein disambiguation al-
gorithms.

As stated in the section above, there is a need for disambiguation systems for
entities across several domains (e.g. entities from computer science and biomed-
ical domain). A first important step would be to investigate how to combine
two KBs, comprising entities from different domains, without mitigating disam-
biguation results due to an increase of heterogeneity and quantity [21].

Another important direction to add more flexibility to disambiguation sys-
tems is in reducing the necessity of training data by intelligent algorithm design
and data exploitation. Most works are built upon supervised algorithms and
need a huge amount of annotated data sets. Promising approaches avoid using
expensive manually annotated data for each new domain and thus achieve better
portability, e.g. [61]

With the entity linking approaches becoming more and more sophisticated,
the application tasks shift to more complex recognition tasks. This shift can
for instance, be observed in the community challenges issued by the BioNLP
consortium. Starting with 2011, the event detection task additionally involved
co-reference resolution and relation identification, and assumed a correct entity
disambiguation system as prerequisite [6].
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